The evolutionary limit for models of populations interacting competitively via several resources (original) (raw)
2011, Journal of Differential Equations
Abstract
We consider a integro-differential nonlinear model that describes the evolution of a population structured by a quantitative trait. The interactions between traits occur from competition for resources whose concentrations depend on the current state of the population. Following the formalism of [15], we study a concentration phenomenon arising in the limit of strong selection and small mutations. We prove that the population density converges to a sum of Dirac masses characterized by the solution ϕ of a Hamilton-Jacobi equation which depends on resource concentrations that we fully characterize in terms of the function ϕ.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (26)
- G. Barles, S. Mirrahimi, B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Methods Appl. Anal. 16, No. 3, 321-340 (2009).
- G. Barles, B. Perthame, Concentrations and constrained Hamilton- Jacobi equations arising in adaptive dynamics. Recent developments in nonlinear partial differential equations, 57-68, Contemp. Math., 439, Amer. Math. Soc., Providence, RI, 2007.
- Bürger, R., Bomze, I. M. Stationary distributions under mutation- selection balance: structure and properties. Adv. Appl. Prob., 28, 227- 251 (1996).
- Calsina, A., Cuadrado, S. Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics. J. Math. Biol., 48, 135-159 (2004).
- Carrillo, J. A., Cuadrado, S., Perthame, B. Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model. Math. Biosci. 205(1), 137-161 (2007).
- N. Champagnat. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Proc. Appl., 116, 1127-1160 (2006).
- N. Champagnat, R. Ferrière, G. Ben Arous. The canonical equation of adaptive dynamics: a mathematical view. Selection, 2, 71-81.
- N. Champagnat, R. Ferrière, S. Méléard. From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 suppl. 1, 2-44 (2008).
- N. Champagnat, S. Méléard. Polymorphic evolution sequence and evo- lutionary branching. To appear in Probab. Theory Relat. Fields (pub- lished online, 2010).
- R. Cressman, J. Hofbauer. Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics. Theor. Pop. Biol., 67, 47-59 (2005).
- L. Desvillettes, P.-E. Jabin, S. Mischler, G. Raoul. On selection dy- namics for continuous structured populations. Commun. Math. Sci., 6(3), 729-747 (2008).
- Dieckmann, U. and Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol., 34, 579- 612 (1996).
- O. Diekmann, A beginner's guide to adaptive dynamics. In Mathemati- cal modelling of population dynamics, Banach Center Publ., 63, 47-86, Polish Acad. Sci., Warsaw (2004).
- O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J.A.J. Metz, H.R. Thieme. On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol. 43, 157-189 (2001).
- O. Diekmann, P.E. Jabin, S. Mischler, B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67, 257-271 (2005).
- Genieys, S., Bessonov, N., Volpert, V. Mathematical model of evolu- tionary branching. Math. Comput. Modelling, 49(11-12), 2109-2115 (2009).
- Geritz, S. A. H., Metz, J. A. J., Kisdi, E., Meszéna, G. Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78, 2024- 2027 (1997).
- Geritz, S. A. H., Kisdi, E., Meszéna, G., Metz, J. A. J. Evolution- ayr singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35-57 (1998).
- J. Hofbauer, R. Sigmund. Adaptive dynamics and evolutionary stabil- ity. Applied Math. Letters, 3, 75-79 (1990).
- P.E. Jabin, G. Raoul, Selection dynamics with competition. To appear J. Math Biol..
- Metz, J. A. J., Nisbet, R. M. and Geritz, S. A. H. How should we define 'fitness' for general ecological scenarios? Trends in Ecology and Evolution, 7, 198-202 (1992).
- Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. A. J. and van Heerwaarden, J. S. Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: van Strien, S. J. & Verduyn Lunel, S. M. (ed.), Stochastic and Spatial Structures of Dynamical Systems, North Holland, Amsterdam, pp. 183-231 (1996).
- S. Mirrahimi, G. Barles, B. Perthame, P. E. Souganidis, Singular Hamilton-Jacobi equation for the tail problem. Preprint.
- Perthame, B., Gauduchon, M. Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simu- lations. IMA Journal of Mathematical Medicine and Biology, to appear (published online, 2009).
- Perthame, B., Génieys, S. Concentration in the nonlocal Fisher equa- tion: the Hamilton-Jacobi limit. Math. Model. Nat. Phenom., 2(4), 135-151 (2007).
- F. Yu. Stationary distributions of a model of sympatric speciation, Ann. Appl. Probab., 17, 840-874 (2007).