Block and alternating copolymer chains of styrene–vinylmethylether and styrene–methylmethacrylate by molecular dynamics simulation (original) (raw)

Abstract

Chains of the copolymers formed by styrene (S) with two different comonomers, vinylmethylether (VME)and methylmethacrylate (MMA), are studied to see how these two comonomers influence the expansion of the coil and the segregation between blocks (the comonomers differ in that homopolymer PS forms miscible blends with PVME and is incompatible with PMMA). Two comonomer sequences are considered: di-block and alternating. Their chains are simulated by molecular dynamics, at two coil densities: the unperturbed random coil state (attained by use of a cut-off for the non-bonded interactions), and a more dense, collapsed coil state (with no cut-off). Properties analysed are: radius of gyration, scattering form factor, separation between block' centres of mass, and pair distribution function between blocks' monomer units. The alternating copolymers (and the corresponding homopolymers) are divided into two parts and treated as 'block' copolymers, for comparison. The di-block copolymer chains are no more expanded than the corresponding homopolymer chains, and no clear distinction between the VME-S and MMA-S pairs can be established. The analysis of 'copolymer' form factors show a slightly larger global segregation of the MMA-S blocks. On the other hand, the alternating copolymer chains of VME-S and MMA-S can be clearly differentiated. Compared to their corresponding homopolymer chains, the VME-S alternating chain is more contracted, and its two blocks are in closer proximity, while the MMA-S alternating chain is more expanded, and its two blocks are more segregated. Thus, a correlation between the compatibility of the homopolymer pair and the degree of segregation of the alternating copolymer chain has been found. q

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (55)

  1. Binder K. In: Binder K, editor. Monte Carlo and molecular dynamics simulations in polymer science. New York: Oxford University Press; 1995.
  2. Fried H, Binder K. J Chem Phys 1991;94:8349.
  3. Lee NK, Johner A, Vilgis TA. Macromolecules 2002;35:6043.
  4. Hamley IW. Macromol Theor Simul 2000;9:363.
  5. Rubio AM, Lodge JFM, Freire JJ. Macromolecules 2002;35:5295.
  6. Vlahos CH, Horta A, Freire JJ. Macromolecules 1992;25:5974.
  7. Vlahos CH, Horta A, Molina LA, Freire JJ. Macromolecules 1994;27: 2726.
  8. Fig. 10. Radial pair distribution function between blocks A and B of the chain. The function 4pr 2 gðrÞdr measures the probability of finding atoms of block B at a distance between r and r þ dr from atoms of block A, as a function of the separation distance, r: Each block comprises one half of the chain (excepting two middle monomer units). Comparison between the step and abrupt methods of the collapsed state, for the di-block MMA-S copolymer chain.
  9. Vlahos CH, Horta A, Hadjichristidis N, Freire JJ. Macromolecules 1995;28:1500.
  10. Molina LA, Lo ´pez Rodrı ´guez A, Freire JJ. Macromolecules 1994;27: 1160.
  11. Molina LA, Freire JJ. J Chem Phys 1996;104:2093.
  12. Molina LA, Freire JJ. J Chem Phys 1998;109:2904.
  13. Yuan XF, Masters AJ. Polymer 1997;38:339.
  14. Van den Oever JMP, Leermakers FAM, Fleer GJ, Ivanov VA, Shusharina NP, Khokhlov AR, Khalatur PG. Phys Rev E 2002;65:1.
  15. Binder K, Muller M. Curr Opin Colloid Interf Sci 2000;5:315.
  16. Neelov I, Niemela S, Sundholm F, Skrifvars M. Macromol Symp 1999;146:267.
  17. Lu ZY, Li ZS, Huang XR, Jiang BZ, Sun JZ. Macromol Theor Simul 1998;7:619.
  18. Wang Q, Yan Q, Nealey PF, de Pablo JJ. J Chem Phys 2000;112:450.
  19. Wang Q, Nath SK, Graham MD, Nealey PF, de Pablo JJ. J Chem Phys 2000;112:9996.
  20. Murat M, Grest GS, Kremer K. Macromolecules 1999;32:595.
  21. Bassler KE, Olvera de la Cruz M. J Phys I 1993;3:2387.
  22. Olaj OF, Neubauer B, Zifferer G. Macromolecules 1998;31:4342.
  23. Olaj OF, Neubauer B, Zifferer G. Macromol Theor Simul 1998;7:171.
  24. Neubauer B, Zifferer G, Olaj OF. Macromol Theor Simul 1998;7:189.
  25. Beaucage G, Stein RS, Hashimoto T, Hasegawa H. Macromolecules 1991;24:3443.
  26. Beaucage G, Stein RS. Macromolecules 1993;26:1617.
  27. Amelino L, Martuscelli E, Sellitti C, Silvestre C. Polymer 1990;31: 1051.
  28. Cimmino S, Di Pace E, Martuscelli E, Silvestre C, Rice DM, Karasz FE. Polymer 1993;34:214.
  29. Tanaka G, Mattice WL. Polym Prepr (Am Chem Soc, Div Polym Chem) 1994;35:78.
  30. Hadziioannou G, Skoulios A. Macromolecules 1982;15:258.
  31. Almdal K, Rosedale JH, Bates FS, Wignall GD, Fredrickson GH. Phys Rev Lett 1990;65:1112.
  32. Minchau B, Du ¨nweg B, Binder K. Polym Commun 1990;31:348.
  33. Molina LA, Freire JJ. Macromolecules 1995;28:2705.
  34. Tang H, Freed KF. J Chem Phys 1992;96:8621.
  35. Yoon DY, Sundararajan PR, Flory PJ. Macromolecules 1975;8:776.
  36. Horinaka J, Ito S, Yamamoto M, Matsuda T. Comp Theor Polym Sci 2000;10:365.
  37. Robyr P, Mu ¨ller M, Suter UW. Macromolecules 1999;32:8681.
  38. Rapold RF, Suter UW. Macromol Theor Simul 1994;3:1.
  39. Dadmun MD, Arlen MJ. Polymer 2003;44:6883.
  40. Eastwood EA, Dadmun MD. Macromolecules 2002;35:5069.
  41. Winey KI, Berba ML, Galvin ME. Macromolecules 1996;29:2868.
  42. Hashimoto T, Hasegawa H, Hashimoto T, Katayama H, Kamigaito M, Sawamoto M, Imai M. Macromolecules 1997;30:6819.
  43. Kulasekere R, Kaiser H, Ankner JF, Russell TP, Brown HR, Hawker CJ, Mayes AM. Macromolecules 1996;29:5493.
  44. Watkins JJ, Brown GD, RamachandraRao VS, Pollard MA, Russell TP. Macromolecules 1999;32:7737.
  45. Dudowicz J, Freed KF. Macromolecules 1993;26:213.
  46. Tanaka G, Mattice WL. Macromolecules 1995;28:1049.
  47. Einaga Y, Koyama H, Konishi T, Yamakawa H. Macromolecules 1989;22:3419.
  48. Konishi T, Yoshizaki T, Saito T, Einaga Y, Yamakawa H. Macromolecules 1990;23:290.
  49. Flory PJ. Statistical mechanics of chain molecules. New York: Wiley/ Interscience; 1969.
  50. Vacatello M, Flory PJ. Macromolecules 1986;19:405.
  51. Sundararajan PR. Macromolecules 1986;19:415.
  52. Tamai Y, Konishi T, Yoshizaki T, Einaga Y, Fujii M, Yamakawa H. Macromolecules 1990;23:4067.
  53. Manson JA, Arquette GJ. Makromol Chem 1960;37:187.
  54. Abe A. Macromolecules 1977;10:34.
  55. Callaghan TA, Paul DR. Macromolecules 1993;26:2439.