Comprehensive study on the impact of the cation alkyl side chain length on the solubility of water in ionic liquids (original) (raw)
Related papers
Fluid Phase Equilibria, 2014
Aiming at the evaluation of the impact of the ionic liquids (ILs) cation symmetry on their phase behaviour, in this work, novel mutual solubilities with water of the symmetric series of [C n C n im][NTf 2 ] (with n = 1-5) were determined and compared with their isomeric forms of the asymmetric [C n C 1 im][NTf 2 ] group. While the solubility of isomeric ILs in water was found to be similar, the solubility of water in ILs follows the same trend up to a maximum cation alkyl side chain length. For n ≥ 4 in [C n C n im][NTf 2 ] the solubility of water in the asymmetric ILs is slightly higher than that observed in the symmetric counterparts. The thermodynamic properties of solution and solvation derived from the experimental solubility data of ILs in water at infinite dilution, namely the Gibbs energy, enthalpy and entropy were used to evaluate the cation symmetry effect on the ILs solvation. It is shown that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Accordingly, it was found that the ILs solubility in water of both symmetric and asymmetric series depends on their molecular volume. Based on these findings, a linear correlation between the logarithm of the solubility of ILs in water and their molar volume is here proposed for the [NTf 2 ]-based ILs at a fixed temperature.
Mutual Solubilities of Water and Hydrophobic Ionic Liquids
The ionic nature of ionic liquids (ILs) results in a unique combination of intrinsic properties that produces increasing interest in the research of these fluids as environmentally friendly "neoteric" solvents. One of the main research fields is their exploitation as solvents for liquid-liquid extractions, but although ILs cannot vaporize leading to air pollution, they present non-negligible miscibility with water that may be the cause of some environmental aquatic risks. It is thus important to know the mutual solubilities between ILs and water before their industrial applications. In this work, the mutual solubilities of hydrophobic yet hygroscopic imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ILs in combination with the anions bis-(trifluoromethylsulfonyl)imide, hexafluorophosphate, and tricyanomethane with water were measured between 288.15 and 318.15 K. The effect of the ILs structural combinations, as well as the influence of several factors, namely cation side alkyl chain length, the number of cation substitutions, the cation family, and the anion identity in these mutual solubilities are analyzed and discussed. The hydrophobicity of the anions increases in the order [C(CN) 3 ] < [PF 6 ] < [Tf 2 N] while the hydrophobicity of the cations increases from [C n mim] < [C n mpy] e [C n mpyr] < [C n mpip] and with the alkyl chain length increase. From experimental measurements of the temperature dependence of ionic liquid solubilities in water, the thermodynamic molar functions of solution, such as Gibbs energy, enthalpy, and entropy at infinite dilution were determined, showing that the solubility of these ILs in water is entropically driven and that the anion solvation at the IL-rich phase controls their solubilities in water. The COSMO-RS, a predictive method based on unimolecular quantum chemistry calculations, was also evaluated for the description of the water-IL binary systems studied, where it showed to be capable of providing an acceptable qualitative agreement with the experimental data.
Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity
International Journal of Molecular Sciences, 2009
The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.
Molecular Solutes in Ionic Liquids: A Structural Perspective
Accounts of Chemical Research, 2007
Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquidstate organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance.
ChemInform Abstract: Molecular Solutes in Ionic Liquids: A Structural Perspective
ChemInform, 2008
Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquidstate organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance.
Ionic liquids: Solvation ability and polarity
Pure and Applied Chemistry, 2009
The role of ionic liquids (ILs) as solvents in chemistry is limited by the poor understanding of the solvation phenomenon in these media. The usual classification criteria used for molecular solvents through various experimental measurements fail to insert ILs into a univocal classification for ILs. Here, we first discuss the unsuitability of the usual interpretative scheme for molecular liquids and elucidate schematically the mechanism of solvation in ILs, pointing out the peculiarities that differentiate them with respect to molecular liquids. Second, we focus on reactivity and reaction kinetics in ILs, underlining the many problems that the complexity of these media reflects on the interpretation of kinetic data and some possible approaches to understand qualitatively the (often not trivial) kinetic problems for reactions performed in ILs.
The Journal of Physical Chemistry B, 2010
Despite many previous important contributions to the characterization of the liquid-liquid phase behavior of ionic liquids (ILs) plus water systems, a gap still exists as far as the effect of isomers (of ILs) is concerned. Therefore, in this work, a comprehensive study of the liquid-liquid equilibria between water and isomeric pyridinium-based ionic liquids has been performed. Atmospheric pressure mutual solubilities between water and pyridinium-based ionic liquids combined with the common anion bis[(trifluoromethyl)sulfonyl]imide were experimentally determined between (288.15 and 318.15) K. The main goal of this work is to study the isomeric effects on the pyridinium-based cation, namely, the structural and positional isomerism, as well as the alkyl side chain length. To the best of our knowledge, the influence of both structural and positional isomerism on the liquid-liquid behavior in ionic-liquid-water-containing systems is an unexplored field and is here assessed for the first time. Moreover, from the experimental solubility data, several infinite dilution molar thermodynamic functions of solution, namely, the Gibbs energy, the enthalpy, and the entropy, were estimated and discussed. In addition, aiming at gathering a broader picture of the underlying thermodynamic solvation phenomenon, molecular dynamics simulations were also carried out for the same experimental systems.
Journal of Molecular Liquids, 2016
A molecular thermodynamic-based approach has been previously employed to correlate the surface tension of ionic liquids (ILs). This paper aims to calculate further property of ILs, the solubility parameter of 27 ILs having imidazolium, pyrrolidinium, pyridinium, phosphonium, piperidinium and ammonium cations by the help of that approach along with an ion contribution-based equation of state (EOS). The proposed model calculates the internal pressure of ILs using a statistical mechanical expression and subsequently their solubility parameters through a simple relation. In this respect, contributions to internal pressure from the hard-sphere repulsion, Lennard-Jones dispersion force, and columbic interactions are considered and assumed to be additive in the development of the model. The performance of the proposed model is checked against the literature solubility parameters of ILs over temperature range within 298-358 K. The proposed model has a sound basis of statistical-mechanics which incorporates contributions arising from the hard-sphere repulsion, Lennard-Jones dispersion forces. Further, the electrostatic interaction is taken into account using the mean spherical approximation (MSA). The outcomes of our model are also compared with those obtained based on the vaporization enthalpies and molar volumes, for which their values are available in literature. Generally, the new molecular model represents accurately the solubility parameters of studied ILs with uncertainty of the order of ±2.33%. The miscibility of some non-polar and polar hydrocarbons in ILs is also investigated by the use of their solubility parameters and Flory-Huggins interaction parameter.
The Journal of Physical Chemistry B, 2009
The understanding of the specific interactions between salt ions and ionic liquids (ILs) in aqueous solutions is relevant in multiple applications. The influence of a series of anions on the solubility of 1-butyl-3methylimidazolium tricyanomethane in aqueous environment was here studied. This study aims at gathering further information to evaluate the recently proposed 1,2 mechanisms of salting-in-and salting-out-inducing ions in aqueous solutions of ILs and to provide insights at the molecular-level on the phenomena occurring in these systems. The observed effect of the inorganic species on the aqueous solubility of the ionic liquid qualitatively follows the Hofmeister series, and it is dependent on the nature and concentration of the anions. The liquid-liquid equilibrium data and 1 H NMR results here reported support a model according to which salting-in-and salting-out-inducing ions operate by essentially different mechanisms. While salting-out is an entropically driven effect resulting from the formation of hydration complexes and the increase of the surface tension of cavity formation, the salting-in phenomena is a consequence of the direct binding of the ions to the hydrophobic moieties of the IL. Further evidence here obtained suggests that the interactions of the inorganic ions are not only established with the cation of the IL, but also with the anion, with the observed solubility effect the result of a balance between those two types of interactions.
Chameleonic Behavior of Ionic Liquids and Its Impact on the Estimation of Solubility Parameters
The Journal of Physical Chemistry B, 2011
The possibility of developing a scale for solubility parameters, with the purpose of predicting the performance and aiding the selection of ILs, was evaluated. For the estimation of solubility parameters, infinite-dilution activity coefficient data were used. The results allowed the identification of a curious behavior for ILs that seem to present more than one solubility parameter, acting as polar molecules in some situations and as nonpolar molecules in others, depending on the medium. This behavior was confirmed by solubility measurements of [C 4 MIM][PF 6 ] in solvent mixtures. In this work, the solubility parameters were also estimated from other properties, namely, viscosities and enthalpies of vaporization, and the relation between the various sets of solubility parameters is discussed. The results obtained suggest that, given the complexity of IL molecules and their liquid phases, a one-dimensional scale for solubility parameters that is able to characterize these fluids is not feasible.