Molecular mechanisms of tissue inhibitor of metalloproteinase 2 in the tumor microenvironment (original) (raw)
Related papers
Frontiers in Molecular Biosciences
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate the turnover of extracellular matrix (ECM) components. Gross and La Piere discovered MMPs in 1962 during an experiment on tissue samples from a tadpole’s tail. Several subtypes of MMPs have been identified, depending on their substrate specificity and localization. MMPs are involved as essential molecules in multiple and diverse physiological processes, such as reproduction, embryonic development, bone remodeling, tissue repair, and regulation of inflammatory processes. Its activity is controlled at various levels such as at transcription level, pro-peptide activation level and by the activity of a family of tissue inhibitors of metalloproteinase, endogenous inhibitors of MMPs. Cancer metastasis, which is the spread of a tumor to a distant site, is a complex process that is responsible for the majority of cancer-related death It is considered to be an indicator of cancer metastasis. During metastasis, t...
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis
Matrix Biology, 2003
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.
Diagnostics
The tumor microenvironment (TME) consists of numerous biologically relevant elements. One of the most important components of the TME is the extracellular matrix (ECM). The compounds of the ECM create a network that provides structural and biochemical support to surrounding cells. The most important substances involved in the regulation of the ECM degradation process are matrix metalloproteinases (MMPs) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). The disruption of the physiological balance between MMP activation and deactivation could lead to progression of various diseases such as cardiovascular disease, cancer, fibrosis arthritis, chronic tissue ulcers, pathologies of the nervous system (such as stroke and Alzheimer’s disease), periodontitis, and atheroma. MMP-TIMP imbalance results in matrix proteolysis associated with various pathological processes such as tumor invasion. The present review discusses the involvement of two MMPs, MMP-2 and MM...
New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment
Frontiers in pharmacology, 2012
Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influenced by the surrounding microenvironment of the tumor. Therefore, the ability to change these surroundings represents an important property through which tumor cells are able to acquire specific functions necessary for tumor growth and dissemination. Matrix metalloproteinases (MMPs) constitute key players in this process, allowing tumor cells to modify the extracellular matrix (ECM) and release cytokines, growth factors, and other cell-surface molecules, ultimately facilitating protease-dependent tumor progression. Remodeling of the ECM by collagenolytic enzymes such as MMP1, MMP8, MMP13, or the membranebound MT1-MMP as well as by other membrane-anchored proteases is required for invasion and recruitment of novel blood vessels. However, the multiple roles of the MMPs do not all fit into a simple pattern. Despite the pro-tumorigenic function of certain metalloproteinases, recent studies have shown that other members of these families, such as MMP8 or MMP11, have a protective role against tumor growth and metastasis in animal models. These studies have been further expanded by large-scale genomic analysis, revealing that the genes encoding metalloproteinases, such as MMP8, MMP27, ADAM7, and ADAM29, are recurrently mutated in specific tumors, while several ADAMTSs are epigenetically silenced in different cancers. The importance of these proteases in modifying the tumor microenvironment highlights the need for a deeper understanding of how stroma cells and the ECM can modulate tumor progression.
Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy
Asian Pacific Journal of Cancer Prevention, 2014
Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression
International Journal of Molecular Sciences
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell–matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper un...
Biochimie, 2005
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is one representative of the natural matrix metalloproteinase (MMP) inhibitor family, encompassing four members. It inhibits all MMPs, except several MT-MMPs, and a disintegrin with a metalloproteinase domain (ADAM)-10 with Kis < nM. Unexpectedly, its upregulation was associated to poor clinical outcome for several cancer varieties. Such finding might be related to the growth-promoting and survival activities of TIMP-1 for normal and cancer cells. In most cases, such properties are MMPindependent and binding of TIMP-1 to an unknown receptor system can trigger JAK (or FAK)/PI 3 kinase/Akt/bad-bclX 2 (erythroid, myeloid, epithelial cell lines) or Ras/Raf1/FAK (osteosarcoma cell line) signaling pathways. The relationship between viral infection and TIMP-1 expression is here underlined. Thus, TIMP-1 might display a dual influence on tumor progression; either beneficial by inhibiting MMPs as MMP-9 and by impairing angiogenesis or detrimental by favoring cancer cells growth or survival. We consider that the proMMP-9/TIMP-1 balance is of critical importance in early events of tumor progression, and might show promise as diagnostic and prognostic marker of malignancy.
Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies
International Journal of Developmental Biology, 2004
Over the last years, the relevance of the matrix metalloproteinase (MMP) family in cancer research has grown considerably. These enzymes were initially associated with the invasive properties of tumour cells, owing to their ability to degrade all major protein components of the extracellular matrix (ECM) and basement membranes. However, further studies have demonstrated the implication of MMPs in early steps of tumour evolution, including stimulation of cell proliferation and modulation of angiogenesis. The establishment of causal relationships between MMP overproduction in tumour or stromal cells and cancer progression has prompted the development of clinical trials with a series of inhibitors designed to block the proteolytic activity of these enzymes. Unfortunately, the results derived from using broad-spectrum MMP inhibitors (MMPIs) for treating patients with advanced cancer have been disappointing in most cases. There are several putative explanations for the lack of success of these MMPIs including the recent finding that some MMPs may play a paradoxical protective role in tumour progression. These observations together with the identification of novel functions for MMPs in early stages of cancer have made necessary a reformulation of MMP inhibition strategies. A better understanding of the functional complexity of this proteolytic system and global approaches to identify the relevant MMPs which must be targeted in each individual cancer patient, will be necessary to clarify whether MMP inhibition may be part of future therapies against cancer.
Cancer Research, 2004
Solid tumors depend on angiogenesis for sustained growth. Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an angiogenesis inhibitor initially characterized for its ability to block matrix metalloproteinases; however, recent data suggest that the antiangiogenic action of TIMP-2 may rely on matrix metalloproteinase-independent mechanisms. The aim of this study was to identify molecular pathways involved in the effects of TIMP-2 on processes dependent on tumor-host interactions such as angiogenesis. Using in vitro cell culture and a syngeneic murine tumor model, we compared the effects of TIMP-2 overexpression on gene expression profiles in vitro to those observed in vivo. Validating these findings by real-time quantitative PCR and layered protein scanning, we identified up-regulation of mitogen-activated protein kinase phosphatase 1 as an effector of the antiangiogenic function of TIMP-2. Up-regulation of mitogen-activated protein kinase phosphatase 1 in tumors overexpressing TIMP-2 leads to dephosphorylation of p38 mitogen-activated protein kinase and inhibition of tumor growth and angiogenesis. Phosphatase activity appears important in regulating tumor angiogenesis, offering a promising direction for the identification of novel molecular targets and antiangiogenic compounds for the treatment of cancer.