Evolution of Proto–Neutron Stars (original) (raw)

1999, The Astrophysical Journal

We study the thermal and chemical evolution during the Kelvin-Helmholtz phase of the birth of a neutron star, employing neutrino opacities that are consistently calculated with the underlying equation of state (EOS). Expressions for the diffusion coefficients appropriate for general relativistic neutrino transport in the equilibrium diffusion approximation are derived. The diffusion coefficients are evaluated using a field-theoretical finite temperature EOS that includes the possible presence of hyperons. The variation of the diffusion coefficients is studied as a function of EOS and compositional parameters. We present results from numerical simulations of protoneutron star cooling for internal stellar properties as well as emitted neutrino energies and luminosities. We discuss the influence of the initial stellar model, the total mass, the underlying EOS, and the addition of hyperons on the evolution of the protoneutron star and upon the expected signal in terrestrial detectors.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.