The effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats (original) (raw)
Related papers
Journal of Neurophysiology
As cochlear implants have become increasingly successful in the rehabilitation of adults with profound hearing impairment, the number of pediatric implant subjects has increased. We have developed an animal model of congenital deafness and investigated the effect of electrical stimulus frequency on the temporal resolution of central neurons in the developing auditory system of deaf cats. Maximum following frequencies (Fmax) and response latencies of isolated single neurons to intracochlear electrical pulse trains (charge balanced, constant current biphasic pulses) were recorded in the contralateral inferior colliculus (IC) of two groups of neonatally deafened, barbiturate-anesthetized cats: animals chronically stimulated with low-frequency signals (< or = 80 Hz) and animals receiving chronic high-frequency stimulation (> or = 300 pps). The results were compared with data from unstimulated, acutely deafened and implanted adult cats with previously normal hearing (controls). Cha...
Hearing Research, 2000
The goal of this research is to examine the functional consequences of patterned electrical stimulation delivered by a cochlear implant in the deafened developing auditory system. In previous electrophysiological experiments conducted in the inferior colliculus (IC), we have demonstrated that the precise cochleotopic organization of the central nucleus (ICC) develops normally in neonatally deafened unstimulated cats and is unaltered despite the lack of normal auditory input during development. However, these studies also showed that chronic electrical stimulation delivered at a single intracochlear location by one bipolar channel of a cochlear implant induces significant expansion of the central representation of the stimulated cochlear sector and degrades the cochleotopic organization of the IC. This report presents additional data from a new experimental series of neonatally deafened cats that received chronic stimulation on two adjacent bipolar intracochlear channels of a cochlear implant. Results suggest that competing inputs elicited by electrical stimulation delivered by two adjacent channels can maintain the selective representations of each activated cochlear sector within the central auditory system and prevent the expansion seen after single-channel stimulation. Alternating stimulation of two channels and use of highly controlled electrical signals may be particularly effective in maintaining or even sharpening selectivity of central representations of stimulated cochlear sectors. In contrast, simultaneous stimulation using two channels of a model analog cochlear implant processor in one experimental animal failed to maintain channel selectivity and resulted in marked expansion and fusion of the central representations of the stimulated channels. This potentially important preliminary result suggests that under some conditions the central auditory system may be unable to discriminate simultaneous, overlapping inputs from adjacent cochlear implant channels as distinct. ß
The Journal of Comparative Neurology, 2009
Electrical stimulation of spiral ganglion neurons in deafened cochlea, via a cochlear implant, provides a means of investigating the effects of the removal and subsequent restoration of afferent input on the functional organization of the primary auditory cortex (AI). We neonatally deafened seventeen cats before the onset of hearing, thereby abolishing virtually all afferent input from the auditory periphery. In seven animals, the auditory pathway was chronically reactivated with environmentallyderived electrical stimuli presented via a multi-channel intracochlear electrode array implanted at eight weeks of age. Electrical stimulation was provided by a clinical cochlear implant that was used continuously for periods of up to seven months. In ten long-term deafened cats and three age-matched normal hearing controls, an intracochlear electrode array was implanted immediately prior to cortical recording. We recorded from a total of 812 single unit and multi-unit clusters in AI of all cats as adults, using a combination of single tungsten and multi-channel silicon electrode arrays. The absence of afferent activity in the long-term deafened animals had little effect on the basic response properties of AI neurons but resulted in complete loss of the normal cochleotopic organization of AI. This effect was almost completely reversed by chronic reactivation of the auditory pathway via the cochlear implant. We hypothesize that maintenance or re-establishment of a cochleotopically organized AI by activation of a restricted sector of the cochlea -as demonstrated in the present study -contributes to the remarkable clinical performance observed among human patients implanted at a young age.
Science, 1999
In congenitally deaf cats, the central auditory system is deprived of acoustic input because of degeneration of the organ of Corti before the onset of hearing. Primary auditory afferents survive and can be stimulated electrically. By means of an intracochlear implant and an accompanying sound processor, congenitally deaf kittens were exposed to sounds and conditioned to respond to tones. After months of exposure to meaningful stimuli, the cortical activity in chronically implanted cats produced field potentials of higher amplitudes, expanded in area, developed long latency responses indicative of intracortical information processing, and showed more synaptic efficacy than in naïve, unstimulated deaf cats. The activity established by auditory experience resembles activity in hearing animals.
Journal of Comparative Neurology, 2003
Restricted cochlear lesions in adult animals result in plastic changes in the representation of the lesioned cochlea, and thus in the frequency map, in the contralateral auditory cortex and thalamus. To examine the contribution of subthalamic changes to this reorganization, the effects of unilateral mechanical cochlear lesions on the frequency organization of the central nucleus of the inferior colliculus (ICC) were examined in adult cats. Lesions typically resulted in a broad high-frequency hearing loss extending from a frequency in the range 15–22 kHz. After recovery periods of 2.5–18 months, the frequency organization of ICC contralateral to the lesioned cochlea was determined separately for the onset and late components of multiunit responses to tone-burst stimuli. For the late response component in all but one penetration through the ICC, and for the onset response component in more than half of the penetrations, changes in frequency organization in the lesion projection zone were explicable as the residue of prelesion responses. In half of the penetrations exhibiting nonresidue type changes in onset-response frequency organization, the changes appeared to reflect the unmasking of normally inhibited inputs. In the other half it was unclear whether the changes reflected unmasking or a dynamic process of reorganization. Thus, most of the observed changes were explicable as passive consequences of the lesion, and there was limited evidence for plasticity in the ICC. The implications of the data with respect to the primary locus of the changes and to the manner in which they contribute to thalamocortical reorganization are considered. J. Comp. Neurol. 467:354–374, 2003. © 2003 Wiley-Liss, Inc.
Hearing after Congenital Deafness: Central Auditory Plasticity and Sensory Deprivation
Cerebral Cortex, 2002
The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electrostimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNAtype signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 µV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.
Development of responses to acoustic interaural intensity differences in the cat inferior colliculus
Experimental Brain Research, 1981
Responses of single neurones in the inferior colliculus of anaesthetized adult cats and kittens were studied using best-frequency stimuli of varying interaural intensity difference (IID). Two broad classes of neurone, distinguished by the predominant type of input from each ear, were examined. One class of cells received predominantly excitatory input from each ear (EE cells). The other class were excited by monaural stimulation of the contralateral ear and showed no response to monaural stimulation of the ipsilateral ear, but inhibition of the excitatory response by simultaneous ipsilateral stimulation (EI cells). Fourteen of the 18 adult EI cells showed marked changes in discharge rate with variation in IID. Adult EI cells showed low response variability and were insensitive to changes in average binaural intensity. In all cases of IID sensitivity, the onset component of the response was less sensitive to IID than the sustained component. Eight out of ten EE cells were insensitive to IID over the range tested. Cells of high best-frequency in kittens younger than 28 days showed irregular changes in discharge rate with variation in IID and wide response variability. Some low-frequency EI cells in young kittens showed sensitivity to IID, but it is unlikely that these could be involved in sound localization as their frequency response was inappropriate. Many cells in kittens aged 31-40 days showed monotonic, adult-like IID functions, but the response variability of these cells remained higher than that of adult cat neurones. These data provide evidence for a developmental change of binaural interaction in the cat.