Actionneurs à base de polymères conducteurs électroniques : de la synthèse à l'intégration (original) (raw)

Conducting IPN actuators for biomimetic vision system

Electroactive Polymer Actuators and Devices (EAPAD) 2011, 2011

b) Brain Vision Systems (BVS) 23 rue Du dessous des berges 75013 Paris ABSTRACT In recent years, many studies on electroactive polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime (several million cycles) make them very attractive for various applications including robotics. Our laboratory recently synthesized new conducting IPN actuators based on high molecular Nitrile Butadiene Rubber, poly(ethylene oxide) derivative and poly (3,4-ethylenedioxithiophene). The presence of the elastomer greatly improves the actuator performances such as mechanical resistance and output force. In this article we present the IPN and actuator synthesis, characterizations and design allowing their integration in a biomimetic vision system.

Conducting IPN actuators: From polymer chemistry to actuator with linear actuation

Synthetic Metals, 2006

Among electroactive actuators, those based on electronic conducting polymers (ECPs) possess several advantages (low actuation voltages, large deformations, etc.) but also some drawbacks (bending movements only, delamination, etc.). In order to overcome the delamination process observed in working three-layered actuators, we have developed a new concept of actuator consisting in an interpenetrating polymer network (IPN) matrix in which 3,4-ethylenedioxythiophene (EDOT) is chemically polymerized. The typical IPN matrix results from the association of the two following cross-linked polymers: the first one, polyethylene oxide (PEO), will ensure the ionic conductivity of the system after salt incorporation while the second one, polybutadiene (PB), will allow to adjust the required mechanical properties. The chemical polymerization of EDOT within the IPN leads to the formation of a PEDOT gradient, its concentration decreasing from the outside faces towards the centre of the IPN. So, such a one-piece actuator is equivalent to a three-layered actuator. Applying a low potential (2-5 V) at a frequency from 0.1 to 15 Hz, up to 10 6 bending deformations in open air have been observed after incorporation of a room temperature ionic liquid. However, linear deformations are more interesting for a number of applications than simple bending motions. The description of the design of an open air working actuator with linear actuation is presented.

Feasibility of conducting semi-interpenetrating networks based on a poly(ethylene oxide) network and poly(3,4-ethylenedioxythiophene) in actuator design

Journal of Applied Polymer Science, 2003

A new type of synthetic pathway-the use of interpenetrating polymer networks (IPNs)-is proposed to design conducting polymer-based actuators. Two types of materials with interesting conducting properties were prepared: (1) a semi-IPN between poly(3,4-ethylenedioxythiophene) (PEDOT) and branched poly(ethylene oxide) (PEO) network; (2) a tricomponent IPN between PEDOT and a PEO/polycarbonate (PC)-based network as the ionic conducting partner. In the first case, the influence of the amount of branching in the PEO network on the EDOT uptake and electrochemical properties was studied. A maximum conductivity (15 S cm Ϫ1 ) was obtained for 60 wt % branched PEO in the material. Moreover, the dispersion profile of PEDOT in the material was shown by elemental analysis and energy dispersion spectroscopy to follow a gradient through the thickness of the film leading to a built-in threelayered device. With respect to PEO/PC materials, the best results were obtained for about 80 wt % PEO in the matrix where the material remains sufficiently elastomeric. In this case, the conductivity reaches about 1 S cm Ϫ1 for a 10 to 30 wt % polycarbonate content. These materials are capable of reversible 45°angular deflections under a 0.5V potential difference.

Poly(3,4-ethylenedioxythiophene)-containing semi-interpenetrating polymer networks: a versatile concept for the design of optical or mechanical electroactive devices

Polymer International, 2010

The synthesis of one-piece electronic conducting interpenetrating polymer networks is proposed as an alternative to multilayer architectures for the design of electroactive devices. The electronic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as active component was symmetrically distributed in a solid polymer electrolyte (SPE) matrix based on poly(ethylene oxide) which was subsequently swollen with either LiClO 4 or an ionic liquid. Depending on the composition and the crosslinking density of the SPEs, the ionic conductivities vary between 0.9 × 10 −3 and 2.2 × 10 −3 S cm −1 at 30 • C. Controlling the PEDOT content from 0.3 to 12 wt% in the material, electrochromic, electroemissive or electromechanical properties are obtained. Typical transmissive and reflective contrast values reach 33 and 27% at 630 and 2500 nm, respectively, for free-standing films upon application of a 1.2 V bias voltage. Both bending and linear actuating devices were developed as beam-shaped or hollow fibres. The actuation occurs under low applied voltage up to 4 V and the output force ranges from 50 to 300 mN. In all cases the electroactive properties are stable over 10 000 (electroemissivity) to 3.5 × 10 6 (actuation) cycles in open air providing an ionic liquid is used as electrolyte.

Polyethylene oxide–polytetrahydrofurane–PEDOT conducting interpenetrating polymer networks for high speed actuators

Smart Materials and Structures, 2011

In recent years, numerous studies on electro-active polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymer-based actuators with interpenetrating polymer network (IPNs) architecture. In this study, the synthesis and characterisation of conducting IPNs for actuator applications is described. The IPNs are synthesised from polyethylene oxide (PEO) and polytetrahydrofurane (PTHF) networks in which the conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated. In a first step, PEO/PTHF IPNs were prepared via an 'in situ' process using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxytelechelic PTHF as starting materials. The IPN mechanical properties were examined by DMA and tensile strength tests. N-ethylmethylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI) swollen PEO/PTHF IPNs show ionic conductivities up to 10 −3 S cm −1 at 30 • C. In a second step, the conducting IPN actuators were prepared by oxidative polymerisation of 3,4-ethylenedioxithiophene (EDOT) using FeCl 3 as an oxidising agent within the PEO/PTHF IPN host matrix. The frequency response performance of the bending conducting IPN actuator was then evaluated. The resulting actuator exhibits a mechanical resonance frequency of up to 125 Hz with 0.75% strain for an applied potential of ±5 V.

Robust solid polymer electrolyte for conducting IPN actuators

Smart Materials and Structures, 2013

Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10 −3 S cm −1 at 25 • C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

A versatile conducting interpenetrating polymer network for sensing and actuation

2017 IEEE International Conference on Robotics and Automation (ICRA), 2017

This work deals with a Conducting-Interpenetrating Polymer Network (C-IPN). The C-IPN exhibits very interesting and promising properties which can make it suitable for applications in robotics as a tool to perform tasks in the fields of manipulation, grasping or force measurement. It is known in the literature that such C-IPN may be actuated and bended to interact with other objects. Some of them can also be used as sensors to characterize the interaction. In this paper, we show that actuation and sensing can be performed at the same time. Moreover, we propose analytical models which can be useful for future work to process the C-IPN output and to control them. All results are verified with experimental data.

Conducting polymers are simultaneous sensing actuators

Conducting polymers are soft, wet and reactive gels capable of mimicking biological functions. They are the electrochemomechanical actuators having the ability to sense the surrounding variables simultaneously. The sensing and actuating signals are sent/received back through the same two connecting wires in these materials. The sensing ability is a general property of all conducting polymers arises from the unique electrochemical reaction taking place in them. This sensing ability is verified for two different conducting polymers here – for an electrochemically generated polypyrrole triple layer bending actuator exchanging cations and for a chemically generated polytoluidine linear actuator exchanging anions. The configuration of the polypyrrole actuator device corresponds to polypyrrole-dodecyl benzene sulfonate (pPy-DBS) film/tape/ pPy-DBS film in which the film on one side of the triple layer is acted as anode and the film on the other side acted as cathode simultaneously, and the films interchanged their role when move in the opposite direction. The polytoluidine linear actuator was fabricated using a hydrgel microfiber through in situ chemical polymerization. The sensing characteristics of these two actuators were studied as a function of their working conditions: applied current, electrolyte concentration and temperature in aqueous electrolytes. The chronopotentiometric responses were studied by applying square electrical currents for a specified time. For the pPy actuator it was set to produce angular movement of ± 45º by the free end of the actuator, consuming constant charges of 60 mC. In both the actuators the evolution of the muscle potential along the electrical current cycle was found to be a function of chemical and physical variables acting on the polymer reaction rates: electrolyte concentration, temperature or driving electrical current. The muscle potential evolved decreases with increasing electrolyte concentrations, increasing temperatures or decreasing driving electrical currents. The electrical energy consumed during reaction was a linear function of the working temperature or of the driving electrical current and a double logarithmic function of the electrolyte concentration. Thus, the conducting polymer based actuators exchanging cations or anions during electrical current flow is a sensor of the working physical and chemical conditions which is a general property of all conducting polymers.