Annexin A1 in the brain – undiscovered roles? (original) (raw)
Related papers
Annexin A1: A Central Player in the Anti-Inflammatory and Neuroprotective Role of Microglia
The Journal of Immunology, 2010
The brain microenvironment is continuously monitored by microglia with the detection of apoptotic cells or pathogens being rapidly followed by their phagocytosis to prevent inflammatory responses. The protein annexin A1 (ANXA1) is key to the phagocytosis of apoptotic leukocytes during peripheral inflammatory resolution, but the pathophysiological significance of its expression in the CNS that is restricted almost exclusively to microglia is unclear. In this study, we test the hypothesis that ANXA1 is important in the microglial clearance of apoptotic neurons in both noninflammatory and inflammatory conditions. We have identified ANXA1 to be sparingly expressed in microglia of normally aged human brains and to be more strongly expressed in Alzheimer's disease. Using an in vitro model comprising microglial and neuronal cell lines, as well as primary microglia from wild-type and ANXA1 null mice, we have identified two distinct roles for microglial ANXA1: 1) controlling the noninflammatory phagocytosis of apoptotic neurons and 2) promoting resolution of inflammatory microglial activation. In particular, we showed that microglial-derived ANXA1 targets apoptotic neurons, serving as both an "eat me" signal and a bridge between phosphatidylserine on the dying cell and formyl peptide receptor 2 on the phagocytosing microglia. Moreover, inflammatory activation of microglia impairs their ability to discriminate between apoptotic and nonapoptotic cells, an ability restored by exogenous ANXA1. We thus show that ANXA1 is fundamental for brain homeostasis, and we suggest that ANXA1 and its peptidomimetics can be novel therapeutic targets in neuroinflammation.
Annexin 1, Glucocorticoids, and the Neuroendocrine-Immune Interface
Annals of The New York Academy of Sciences, 2006
Annexin 1 (ANXA1) was originally identified as a mediator of the anti-inflammatory actions of glucocorticoids (GCs) in the host defense system. Subsequent work confirmed and extended these findings and also showed that the protein fulfills a wider brief and serves as a signaling intermediate in a number of systems. ANXA1 thus contributes to the regulation of processes as diverse as cell migration, cell growth and differentiation, apoptosis, vesicle fusion, lipid metabolism, and cytokine expression. Here we consider the role of ANXA1 in the neuroendocrine system, particularly the hypothalamo-pituitary-adrenocortical (HPA) axis. Evidence is presented that ANXA1 plays a critical role in effecting the negative feedback effects of GCs on the release of corticotrophin (ACTH) and its hypothalamic-releasing hormones and that it is particularly pertinent to the early-onset actions of the steroids that are mediated via a nongenomic mechanism. The paracrine/juxtacrine mode of ANXA1 action is discussed in detail, with particular reference to the significance of the secondary processing of ANXA1, the processes that control the intracellular and transmembrane trafficking of the protein of the molecule and the mechanism of ANXA1 action on its target cells. In addition, the role of ANXA1 in the perinatal programming of the HPA axis is discussed.
Annexin A1 (ANXA1): A Systematic Review of Its Role in Inflammation
Sains Malaysiana, 2021
Inflammation is a body response towards any injury or tissue damage. It involves the accumulation of neutrophils and release of inflammatory mediators. ANXA1, a 37 kDa glucocorticoid inducible protein plays an important role in resolving inflammation. The unique N-terminal and its mimetic peptide exert strong anti-inflammatory actions. This study was conducted to review the roles of ANXA1 in inflammation and identify any other reported roles. Electronic search was done whereby a total of 3797 articles were located from three databases, namely Ovid MEDLINE, Science Direct, and PubMed. Articles on ANXA1 and inflammation were selected based on inclusive criteria and review papers were excluded. Bias analysis was performed based on bias risk tool and 27 articles were included in the study. It was found that ANXA1 was able to resolve inflammation in many inflammatory diseases. Upon treatment with glucocorticoid, ANXA1 is induced and its significant expressions in tissues are important in...
Annexin 7-immunoreactive microglia in the hippocampus of control and adrenalectomized rats
Neuroscience Letters, 2005
Annexin 7 (ANX7), also termed synexin, is a member of the annexin family of calcium-binding proteins. In the present study, we examined the distribution and cellular localization of ANX7-immunoreactivity in the rat hippocampus and its response to adrenalectomy (ADX). ANX7 was co-localized with OX42 in microglia distributed throughout the hippocampus of both control and ADX animals. ANX7-immunoreactivity was not detected in GFAP-positive astrocytes or in hippocampal neurons. At 1-week and 4-weeks following ADX, we observed a population of large, ameboid, ANX7-immunopositive microglia ("reactive microglia") which were largely confined to the granule cell layer of the dentate gyrus throughout its rostrocaudal extent. No reactive microglia were present in the hippocampus of sham-ADX or ADX + corticosterone treated animals. In 4-weeks ADX animals but not 1-week ADX, ANX7-immunostaining was significantly increased in the mossy fiber layer of CA3, due to the presence of many small, dark-staining "activated microglia". Our results show that ANX7 is abundantly expressed in the rat hippocampus by different microglial forms (e.g., ramified, activated and reactive microglia), suggesting an important role for this calcium-binding protein in microglial Ca 2+-dependent processes.
The lack of annexin A7 affects functions of primary astrocytes
Experimental Cell Research, 2003
Annexin A7 is a Ca 2ϩ -and phospholipid-binding protein, which is thought to function in membrane organization and Ca 2ϩ -dependent signaling processes. It localizes to different cellular compartments and exists in a 47-and 51-kDa isoform with the large isoform being expressed in brain, skeletal, and heart muscle. In human temporal brain annexin A7 was found exclusively in astroglial cells. As astrocytes are thought to play key roles in several processes of the brain we focused on Ca 2ϩ -dependent signaling processes and astrocyte proliferation. Primary astrocytes from an anxA7 Ϫ/Ϫ mouse exhibited an increased velocity of mechanically induced astrocytic Ca 2ϩ waves as compared to wild type. We also observed a remarkably increased proliferation rate in cultured mutant astrocytes. A search for annexin A7 binding partners with advanced biochemical methods confirmed sorcin as the major binding protein. However, in vivo GFP-tagged annexin A7 and sorcin appeared to redistribute mainly independently from each other in wild type and in mutant astrocytes. Our results favor an involvement of annexin A7 in Ca 2ϩ -dependent signaling or Ca 2ϩ homeostasis in astrocytes.
An overview of the effects of annexin 1 on cells involved in the inflammatory process
Memorias Do Instituto Oswaldo Cruz, 2005
The concept of anti-inflammation is currently evolving with the definition of several endogenous inhibitory circuits that are important in the control of the host inflammatory response. Here we focus on one of these pathways, the annexin 1 (ANXA1) system. Originally identified as a 37 kDa glucocorticoid-inducible protein, ANXA1 has emerged over the last decade as an important endogenous modulator of inflammation. We review the pharmacological effects of ANXA1 on cell types involved in inflammation, from blood-borne leukocytes to resident cells. This review reveals that there is scope for more research, since most of the studies have so far focused on the effects of the protein and its peptido-mimetics on neutrophil recruitment and activation. However, many other cells central to inflammation, e.g. endothelial cells or mast cells, also express ANXA1: it is foreseen that a better definition of the role(s) of the endogenous protein in these cells will open the way to further pharmacological studies. We propose that a more systematic analysis of ANXA1 physio-pharmacology in cells involved in the host inflammatory reaction could aid in the design of novel anti-inflammatory therapeutics based on this endogenous mediator.
Expression of Annexin and Annexin-mRNA in Rat Brain Under Influence of Steroid Drugs
Brain Edema X, 1997
BRAIN tissue of rats pretreated with methylprednisolone or with the 21-aminosteroid U74389F, and that of untreated control rats, was assessed for the expression of annexin-1 (Anx-1) and the transcription of its mRNA. For this purpose Anx-1 cDNA was amplified and simultaneously a T7-RNA-polymerase promoter was incorporated into the cDNA using a polymerase chain reaction (PCR). Then digoxigenin-11-UTP was incorporated into the transcribed cRNA with T7-RNA-polymerase. With this probe in situ hybridization was carried out on sections of the brain. The probe was visualized by an immunoassay using an antidigoxigenin antibody conjugate. Anx-1 protein was assessed by means of immunohistochemistry using a polyclonal antibody. The various brain areas of the control animals showed an appreciable amount of Anx-1 at mRNA or protein level; on the other hand, the animals which had been pretreated with either steroid, showed a more intense Anx-1 mRNA signal than the controls in many areas. In the pretreated animals A.-1 immunostaining was unchanged in cortex, basal ganglia, amygdala and septum, but more intense in hippocampus, hypothalamus and thalamus. In ependyma, choroid plexus, meninges, and vascular walls there was no Anx-1 mRNA transcription detectable. An opposite profile was shown by the Anx-1 immunoreactivity, the protein was present in control animals as well as the steroid-pretreated animals, suggesting that here the protein was either from systemic origin, or has diffused from adjacent structures. The results indicated that Anx-1 mRNA transcription is upregulated by either steroid, and that in the untreated animals there is a resting level of Anx-1 mRNA transcription, presumably reflecting physiological influences on Anx-1 expression.
Glia, 2007
We used proteomics to identify regulated proteins following cerebral ischemia in a rat model. Young rats were subjected to reversible middle cerebral artery (MCA) occlusion and proteins were extracted from the peri-infarcted and the corresponding contralateral area at days 3 and 14 postischemia. Proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis followed by mass spectrometry. We report for the first time that an isoform of annexin A3 (ANXA3) was among the upregulated proteins in the postischemic rat brain. The results were confirmed by real-time PCR and by western blotting. Double-and triple-immunostaining with neuronal and microglia/macrophagic markers demonstrated that ANXA3 is produced by resting microglia in control tissue and by activated microglial/macrophage cells in the infarcted area. 3D-images of the infarcted area suggest that ANXA3 is associated with a phagocytic phenotype. Our study identifies ANXA3 as a novel marker of brain microglia, which should be of substantial value in future studies of microglial cells and its role in the postischemic brain. V V C
A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils
Faseb Journal, 2003
The glucocorticoid-inducible protein annexin (ANXA) 1 is an anti-inflammatory mediator that down-regulates the host response. Endogenously, ANXA1 is released in large amounts from adherent polymorphonuclear neutrophils (PMN) and binds to their cell surface to inhibit their extravasation into inflamed tissues. The present study determined the effects of exogenous ANXA1 on several functions of human PMN in vitro. Addition of 0.1-1 µM human recombinant ANXA1 to the PMN provoked rapid and transient changes in intracellular Ca 2+ concentrations that were blocked by the Ca 2+ channel inhibitor SKF-96365. Although ANXA1 did not affect oxidant production and only minimally affected PMN chemotactic properties, the ANXA1promoted Ca 2+ influx was associated with two important functional effects: shedding of Lselectin and acceleration of PMN apoptosis. The latter effect was confirmed using three distinct technical procedures, namely, cell cycle, Hoechst staining, and ANXA5 binding assay. ANXA1induced PMN apoptosis was insensitive to inhibitors of L-selectin shedding, whereas it appeared to be associated with dephosphorylation of the proapoptotic intracellular mediator BAD. In conclusion, exogenous ANXA1 displayed selective actions on human PMN. We propose that the new proapoptotic effect reported here may be part of the spectrum of ANXA1-mediated events involved in the resolution of acute inflammation.