Rapid evolutionary responses of life history traits to different experimentally-induced pollutions in Caenorhabditis elegans (original) (raw)

2014, BMC Evolutionary Biology

Background: Anthropogenic disturbances can lead to intense selection pressures on traits and very rapid evolutionary changes. Evolutionary responses to environmental changes, in turn, reflect changes in the genetic structure of the traits, accompanied by a reduction of evolutionary potential of the populations under selection. Assessing the effects of pollutants on the evolutionary responses and on the genetic structure of populations is thus important to understanding the mechanisms that entail specialization to novel environmental conditions or resistance to novel stressors. Results: Using an experimental evolution approach we exposed Caenorhabditis elegans populations to uranium, salt and alternating uranium-salt environments over 22 generations. We analyzed the changes in the average values of life history traits and the consequences at the demographic level in these populations. We also estimated the phenotypic and genetic (co)variance structure of these traits at different generations. Compared to populations in salt, populations in uranium showed a reduction of the stability of their trait structure and a higher capacity to respond by acclimation. However, the evolutionary responses of traits were generally lower for uranium compared to salt treatment; and the evolutionary responses to the alternating uranium-salt environment were between those of constant environments. Consequently, at the end of the experiment, the population rate of increase was higher in uranium than in salt and intermediate in the alternating environment.