Impact of acute whole-body cold exposure with concurrent isometric handgrip exercise on aortic pressure waveform characteristics (original) (raw)
Related papers
Central Aortic Blood Pressure of Hypertensive Men During Short-Term Cold Exposure
American Journal of Hypertension, 2014
background Short-and long-term exposures to cold increase blood pressure and may explain the higher wintertime cardiovascular morbidity and mortality. Hypertensive subjects may be more susceptible to adverse coldrelated cardiovascular health effects. The aim of our study was to assess the effect of short-term cold exposure on central aortic blood pressure among untreated hypertensive men.
European Journal of Applied Physiology, 2013
Aortic pulse wave velocity (PWV) and augmentation index (AIx) are independent predictors of cardiovascular risk and mortality, but little is known about the effect of air temperature changes on these variables. Our study investigated the effect of exposure to whole-body mild-cold on measures of arterial stiffness (aortic and brachial PWV), and on central haemodynamics [including augmented pressure (AP), AIx], and aortic reservoir components [including reservoir and excess pressures (P ex )]. Sixteen healthy volunteers (10 men, age 43 ± 19 years; mean ± SD) were randomised to be studied under conditions of 12°C (mild-cold) and 21°C (control) on separate days. Supine resting measures were taken at baseline (ambient temperature) and after 10, 30, and 60 min exposure to each experimental condition in a climate chamber. There was no significant change in brachial blood pressure between mild-cold and control conditions. However, compared to control, AP [?2 mmHg, 95 % confidence interval (CI) 0.36-4.36; p = 0.01] and AIx (?6 %, 95 % CI 1.24-10.1; p = 0.02) increased, and time to maximum P ex (a component of reservoir function related to timing of peak aortic in-flow) decreased (-7 ms, 95 % CI -15.4 to 2.03; p = 0.01) compared to control. Yet there was no significant change in aortic PWV (?0.04 m/s, 95 % CI -0.47 to 0.55; p = 0.87) or brachial PWV (?0.36 m/s; -0.41 to 1.12; p = 0.35) between conditions. We conclude that mild-cold exposure increases central haemodynamic stress and alters timing of peak aortic in-flow without differentially affecting arterial stiffness.
Reproducibility of exercise-induced modulation of cardiovascular responses to cold stress
Clinical Autonomic Research, 1997
The modulation of cardiovascular responses to the cold pressor test (CPT) as produced by exercise was studied in 13 volunteers. The reproducibility of the measurements selected for the study, i.e. heart rate (HR), blood pressure (BP), blood flow (BF) and skin temperature (ST), was investigated through repeat experiments in the fall of 1994 and the winter of 1995. HR was monitored before, during and after a 10-min period of bicycling at 70% of reserve HR. BP, cutaneous BF and ST were measured before and after exercise. Two CPTs (hand into ice-cold water for 1 min) were performed: one preceding exercise and another at 3 min after exercise. The results obtained allow us to conclude that in non-hypertensive volunteers (1) the pronounced cardiovascular responses (ST, BF and BP) induced by CPT are reproducible (p>0.2) when compared to basal level values and (2) cardiovascular responses to cold stress are significantly attenuated by exercise (p<0.03). Our study, therefore, supports and validates the use of our coupled exercise-CPT method in ongoing epidemiological studies attempting to identify individuals at risk for the development of hypertension as well as those most likely to benefit from preventative exercise programs.
Scientific Reports
Exercise is beneficial to cardiovascular health, evidenced by reduced post-exercise central aortic blood pressure (BP) and wave reflection. We assessed if post-exercise central hemodynamics are modified due to an altered thermal state related to exercise in the cold in patients with coronary artery disease (CAD). CAD patients (n = 11) performed moderate-intensity lower-body exercise (walking at 65–70% of HRmax) and rested in neutral (+ 22 °C) and cold (− 15 °C) conditions. In another protocol, CAD patients (n = 15) performed static (five 1.5 min work cycles, 10–30% of maximal voluntary contraction) and dynamic (three 5 min workloads, 56–80% of HRmax) upper-body exercise at the same temperatures. Both datasets consisted of four 30-min exposures administered in random order. Central aortic BP and augmentation index (AI) were noninvasively assessed via pulse wave analyses prior to and 25 min after these interventions. Lower-body dynamic exercise decreased post-exercise central systolic...
The Effects of Cold and Lower Body Negative Pressure on Cardiovascular Homeostasis
BioMed Research International, 2015
Purpose. The purpose of this study is to determine how cold exposure and lower body negative pressure effected cardiovascular variables. Methods. Eleven males (20.3 years ± 2.7) underwent two 20-minute exposures to LBNP. During the 2 trials, the subjects were exposed to cold air (10 ∘ C) (COLD) and to ambient temperature (23 ∘ C) (AMB). The trials consisted of a 100-minute pre-LBNP period followed by a 20-minute exposure to LBNP and then a 15-minute recovery period. Cardiovascular variables were recorded every 30 minutes using bioimpedance. Results. When LBNP was applied during the AMB trials, stroke volume immediately decreased. During the COLD trial, there was a five-minute delay before the decrease in stroke volume. Heart rate increased immediately after LBNP initiation during the AMB trials but there was a delay in the increase during the COLD trials. That same pattern was followed with mean arterial blood pressures. Cerebral oxygenation was significantly lower throughout the COLD trial as compared to the AMB trials. Six subjects reported symptoms of syncope or presyncope during the AMB trials but there were no reports of symptoms during the COLD trials. Conclusion. From analysis of this data, cold improved the subject's tolerance to LBNP.
Frontiers in Physiology, 2016
Exposure to cold increases blood pressure and may contribute to higher wintertime cardiovascular morbidity and mortality in hypertensive people, but the mechanisms are not well-established. While hypertension does not alter responses of vagally-mediated heart rate variability to cold, it is not known how hypertension modifies baroreflex sensitivity (BRS) and blood pressure variability during cold exposure. Our study assessed this among untreated hypertensive men during short-term exposure comparable to habitual winter time circumstances in subarctic areas. We conducted a population-based recruitment of 24 untreated hypertensive and 17 men without hypertension (age 55-65 years) who underwent a whole-body cold exposure (−10 • C, wind 3 m/s, winter clothes, 15 min, standing). Electrocardiogram and continuous blood pressure were measured to compute spectral powers of systolic blood pressure and heart rate variability at low (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) and spontaneous BRS at low frequency (LF). Comparable increases in BRS were detected in hypertensive men, from 2.6 (2.0, 4.2) to 3.8 (2.5, 5.1) ms/mmHg [median (interquartile range)], and in control group, from 4.3 (2.7, 5.0) to 4.4 (3.1, 7.1) ms/mmHg. Instead, larger increase (p < 0.05) in LF blood pressure variability was observed in control group; response as median (interquartile range): 8 (2, 14) mmHg 2 , compared with hypertensive group [0 (−13, 20) mmHg 2 ]. Untreated hypertension does not disturb cardiovascular protective mechanisms during moderate cold exposure commonly occurring in everyday life. Blunted response of the estimate of peripheral sympathetic modulation may indicate higher tonic sympathetic activity and decreased sympathetic responsiveness to cold in hypertension.
Blood pressure and thermal responses to repeated whole body cold exposure: effect of winter clothing
European Journal of Applied Physiology, 2009
The effect of outdoor clothing and repeated cold exposure on blood pressure, heart rate, skin temperature, and thermal sensation was studied in 16 young (18-34 years) and 8 middle-aged (35-51 years) normotensive participants. Four winter clothing ensembles were used: regular winter clothing without a hat, with a hat, with an extra pair of pants, and with a hat and an extra pair of pants. The participants were exposed four times to-5°C for 15 min wearing different clothing ensembles in counterbalanced order and each cold exposure was followed by 25 min of rewarming at 25°C. The results showed that systolic and diastolic blood pressure increased in cold and increased more when a hat was not used. Wearing hats not only reduced the blood pressure response during cold exposure, but also promoted faster recovery of forehead skin temperature and blood pressure. These findings are encouraging and warrant further investigations to better understand the benefits of wearing appropriate clothing in the winter, especially among older people and patients with cardiovascular diseases.
Cardiovascular responses to cold and submaximal exercise in patients with coronary artery disease
American journal of physiology. Regulatory, integrative and comparative physiology, 2018
Regular year-round exercise is recommended for patients with coronary artery disease (CAD). However, the combined effects of cold and moderate sustained exercise, both known to increase cardiac workload, on cardiovascular responses are not known. We tested the hypothesis that cardiac workload is increased, and evidence of ischemia would be observed during exercise in the cold in patients with CAD. Sixteen men (59.3 ± 7.0 yr, means ± SD) with stable CAD each underwent 4, 30 min exposures in a randomized order: seated rest and moderate-intensity exercise [walking, 60%-70% of max heart rate (HR)] performed at +22°C and -15°C. Systolic brachial blood pressure (SBP), HR, electrocardiogram (ECG), and skin temperatures were recorded throughout the intervention. Rate pressure product (RPP) and ECG parameters were obtained. The combined effects of cold and submaximal exercise were additive for SBP and RPP and synergistic for HR when compared with rest in a neutral environment. RPP (mmHg·beat...
Blood pressure and thermal responses to whole body cold exposure in mildly hypertensive subjects
Journal of Thermal Biology, 2004
Six mildly hypertensive subjects were exposed three times to À15 1C (wind 3.5 m/s) for 15 min. After an initial exposure for familiarisation, second and third exposures were arranged in a random double blind, crossover fashion after a week's ingestion of hydrochlorothiazide or placebo. Cold decreased skin temperatures, but not rectal temperature. Blood pressure increased 30/20 mmHg and heart rate decreased 12 beats/min by cold. Blood pressure seems to react in 3 min to changes in ambient temperature. The skin temperatures of uncovered body parts were apparently responsible for that. Hydrochlorothiazide did not affect either cardiovascular or thermal responses in cold.