The Hot and Energetic Universe e Astrophysics of galaxy groups and clusters with Athena+ (original) (raw)
Related papers
The Hot and Energetic Universe: The evolution of galaxy groups and clusters
Major astrophysical questions related to the formation and evolution of structures, and more specifically of galaxy groups and clusters, will still be open in the coming decade and beyond: what is the interplay of galaxy, supermassive black hole, and intergalactic gas evolution in the most massive objects in the Universe - galaxy groups and clusters? What are the processes driving the evolution of chemical enrichment of the hot diffuse gas in large-scale structures? How and when did the first galaxy groups in the Universe, massive enough to bind more than 10^7 K gas, form? Focussing on the period when groups and clusters assembled (0.5<z<2.5), we show that, due to the continuum and line emission of this hot intergalactic gas at X-ray wavelengths, Athena+, combining high sensitivity with excellent spectral and spatial resolution, will deliver breakthrough observations in view of the aforementioned issues. Indeed, the physical and chemical properties of the hot intra-cluster gas...
The Hot and Energetic Universe AGN Feedback in Galaxy Clusters and Groups
Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. The large collecting area, excellent spectral resolution and high spatial resolution of Athena+ will provide the breakthrough diagnostic ability necessary to develop this understanding, via: (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. Athena+ will therefore determine for the first time how jet energy is dissipated and distributed in group and cluster gas, and how a feedback loop operates in group/cluster cores to regulate gas cooling and AGN fuelling. Athena+ will also establish firmly the cumulative impact of powerful radio galaxies on the evolution of baryons from the epoch of group/cluster formation to the present day.
Astronomy & Astrophysics, 2018
Answers to the metal production of the Universe can be found in galaxy clusters, notably within their Intra-Cluster Medium (ICM). The X-ray Integral Field Unit (X-IFU) on board the next-generation European X-ray observatory Athena (2030s) will provide the necessary leap forward in spatially-resolved spectroscopy required to disentangle the intricate mechanisms responsible for this chemical enrichment. In this paper, we investigate the future capabilities of the X-IFU in probing the hot gas within galaxy clusters. From a test sample of four clusters extracted from cosmological hydrodynamical simulations, we present comprehensive synthetic observations of these clusters at different redshifts (up to z ≤ 2) and within the scaled radius R 500 performed using the instrument simulator SIXTE. Through 100 ks exposures, we demonstrate that the X-IFU will provide spatially-resolved mapping of the ICM physical properties with little to no biases (5%) and well within statistical uncertainties. The detailed study of abundance profiles and abundance ratios within R500 also highlights the power of the X-IFU in providing constraints on the various enrichment models. From synthetic observations out to z = 2, we also quantify its ability to track the chemical elements across cosmic time with excellent accuracy, and thereby to investigate the evolution of metal production mechanisms as well as the link to the stellar initial mass-function. Our study demonstrates the unprecedented capabilities of the X-IFU in unveiling the properties of the ICM but also stresses the data analysis challenges faced by future high-resolution X-ray missions such as Athena.
The thermal imprint of galaxy formation on X-ray clusters. Nature397
1999
It is widely believed that structure in the Universe evolves hierarchically, as primordial density fluctuations, amplified by gravity, collapse and merge to form progressively larger systems. The structure and evolution of X-ray clusters, however, seems at odds with this hierarchical scenario for structure formation 1. Poor clusters and groups, as well as most distant clusters detected to date, are substantially fainter than expected from the tight relations between luminosity, temperature and redshift predicted by these models. Here we show that these discrepancies arise because, near the centre, the entropy of the hot, diffuse intracluster medium (ICM) is higher than achievable through gravitational collapse, indicating substantial non-gravitational heating of the ICM. We estimate this excess entropy for the first time, and argue that it represents a relic of the energetic winds through which forming galaxies polluted the ICM with metals. Energetically, this is only possible if th...
Diffuse baryonic matter beyond 2020
Arxiv preprint arXiv: …, 2009
The hot, diffuse gas that fills the largest overdense structures in the Universe -clusters of galaxies and a web of giant filaments connecting them -provides us with tools to address a wide array of fundamental astrophysical and cosmological questions via observations in the X-ray band. Clusters are sensitive cosmological probes. To utilize their full potential for precision cosmology in the following decades, we must precisely understand their physicsfrom their cool cores stirred by jets produced by the central supermassive black hole (itself fed by inflow of intracluster gas), to their outskirts, where the infall of intergalactic medium (IGM) drives shocks and accelerates cosmic rays. Beyond the cluster confines lies the virtually unexplored warm IGM, believed to contain most of the baryonic matter in the presentday Universe. As a depository of all the matter ever ejected from galaxies, it carries unique information on the history of energy and metal production in the Universe. Currently planned major observatories, such as Astro-H and IXO, will make deep inroads into these areas, but to see the most interesting parts of the picture will require an almost science-fiction-grade facility with tens of m 2 of effective area, subarcsecond angular resolution, a matching imaging calorimeter and a super high-dispersion spectrograph, such as Generation-X.
Galaxy Clusters: A Novel Look at Diffuse Baryons Withstanding Dark Matter Gravity
The Astrophysical Journal, 2009
In galaxy clusters the equilibria of the intracluster plasma (ICP) and of the gravitationally dominant dark matter (DM) are governed by the hydrostatic and the Jeans equation, respectively; in either case gravity is withstood by the corresponding, entropy-modulated pressure. Jeans, with the DM 'entropy' set to K ∝ r α and α ≈ 1.25 − 1.3 applying from groups to rich clusters, yields our radial α-profiles; these, compared to the empirical NFW distribution, are flatter at the center and steeper in the outskirts as required by recent gravitational lensing data. In the ICP, on the other hand, the entropy run k(r) is mainly shaped by shocks, as steadily set by supersonic accretion of gas at the cluster boundary, and intermittently driven from the center by merging events or by active galactic nuclei (AGNs); the resulting equilibrium is described by the exact yet simple formalism constituting our ICP Supermodel. With a few parameters, this accurately represents the runs of density n(r) and temperature T (r) as required by up-to-date X-ray data on surface brightness and spectroscopy for both cool core (CC) and non cool core (NCC) clusters; the former are marked by a middle temperature peak, whose location is predicted from rich clusters to groups. The Supermodel inversely links the inner runs of n(r) and T (r), and highlights their central scaling with entropy n c ∝ k −1 c and T c ∝ k 0.35 c , to yield radiative cooling times t c ≈ 0.3 (k c /15 keV cm 2 ) 1.2 Gyr. We discuss the stability of the central values so focused: against radiative erosion of k c in the cool dense conditions of CC clusters, that triggers recurrent AGN activities resetting it back; or against energy inputs from AGNs and mergers whose effects are saturated by the hot central conditions of NCC clusters. From the Supermodel we derive as limiting cases the classic polytropic β-models, and the 'mirror' model with T (r) ∝ σ 2 (r) suitable for NCC and CC clusters, respectively; these limiting cases highlight how the ICP temperature T (r) strives to mirror the DM velocity dispersion σ 2 (r) away from energy and entropy injections. Finally, we discuss how the Supermodel connects information derived from X-ray and gravitational lensing observations.
Clusters of Galaxies: Beyond the Thermal View
Space Science Reviews, 2008
We present the work of an international team at the International Space Science Institute (ISSI) in Bern that worked together to review the current observational and theoretical status of the non-virialised X-ray emission components in clusters of galaxies. The subject is important for the study of large-scale hierarchical structure formation and to shed light on the "missing baryon" problem. The topics of the team work include thermal emission and absorption from the warm-hot intergalactic medium, non-thermal X-ray emission in clusters of galaxies, physical processes and chemical enrichment of this medium and clusters of galaxies, and the relationship between all these processes. One of the main goals of the team is to write and discuss a series of review papers on this subject. These reviews are intended as introductory text and reference for scientists wishing to work actively in this field. The team consists of sixteen experts in observations, theory and numerical simulations.
Galaxy cluster cosmology from X-ray surveys of the hot and energetic Universe
Proceedings of the International Astronomical Union
We discuss recent advances and prospects in our understanding of the formation of structures on cosmic scales based on surveys of galaxy clusters in the X-ray bands. We highlight the interaction between observations and numerical simulations of the X-ray sky. We show how future surveys will unveil the nature of the dark energy and study its evolution with time.