Current developments in the use of stem cell for therapeutic neovascularisation: is the future therapy "cell-free"? (original) (raw)
Related papers
American journal of translational research, 2015
The concept of Endothelial Progenitor Cells (EPCs) therapy for adult neovascularization has continuously received attention. They are believed to participate in endothelial repair and post natal angiogenesis due to their abilities in differentiating into endothelial cells and producing protective cytokines and growth factors. Abundant evidence supports the involvement of EPCs in capillary growth and in participating in the formation of collateral vessels, which lead to improved vascular perfusion and functional recovery in target tissue. Autologous EPC now is becoming a novel treatment option for therapeutic revascularization and vascular repair in ischemic diseases. However, various diseases such as diabetes, heart disease and ischemic diseases are related to EPC dysfunction and give rise to additional challenges of autologous EPC therapy. A novel strategy to enhance the number and function of EPCs is needed to be established to provide successful autologous EPCs therapy. Currently...
Vascular Regeneration by Endothelial Progenitor Cells in Health and Diseases
Microcirculation Revisited - From Molecules to Clinical Practice, 2016
Human endothelial progenitor cells (hEPCs) are adult stem cells, located in the bone marrow and peripheral blood. These cells can be differentiated into mature endothelial cells, which are involved in processes of angiogenesis and vessel regeneration. Different phenotypes and subtypes of endothelial progenitor cells (EPCs), such as early and late EPCs, have been described according to their functionality. Thus, it has been shown that early EPCs release cytokines that promote tissue regeneration and neovasculogenesis, whereas late EPC and endothelial colony forming cells (ECFCs) contribute to the formation of blood vessels and stimulate tube formation. It has been demonstrated that the number of circulating hEPC is decreased in individuals with hypercholesterolemia, hypertension, and/or diabetes. In addition, the number and the migratory activity of these cells are inversely correlated with risk factors such as hypertension, hypercholesterolemia, diabetes, and metabolic syndrome. On the other hand, the number of circulating hEPC is increased in hypoxia or acute myocardial infarction (AMI). hEPCs have been used for cell-based therapies due to their capacity to contribute in the reendothelialization of injured blood vessels and neovascularization in ischemic tissues. This chapter provides an overview of the key role of hEPC in promoting angiogenesis and their potential use for cell therapy.
Vascular Regeneration: Endothelial Progenitor Cell Therapy for Ischemic Diseases
Regenerative Medicine, 2010
Since the discovery of circulating endothelial progenitor cells (EPC) in adult human peripheral blood, EPCs are believed to home to sites of neovascularization, where they contribute to vascular regeneration by forming a structural component of capillaries and by secreting angiogenic factors, thereby enhancing vascular and blood flow recovery in ischemic tissue. This therapeutic strategy has been effective in animal models of ischemia, and we and other clinical trials have demonstrated that it was safe and feasible for treatment of critical ischemic limb and cardiovascular diseases. However, the decline of EPCs in the peripheral blood and evidence that several disease states reduced EPC number and/or function have prompted the development of several strategies to overcome these limitations, including the administration of genetically modified EPCs that overexpress angiogenic growth factors. To optimize therapeutic outcomes, investigators must keep refining methods of EPC purification, expansion, and administration, and to develop techniques that overcome the intrinsic decline and phenotypic deficiencies of EPCs. In this chapter, we have illustrated EPC biology and the therapeutic potential of EPCs for vascular regeneration demonstrating our data of clinical study.
Regenerative medicine, 2017
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Therapeutic Potential of Endothelial Progenitor Cells for Cardiovascular Diseases
Current Vascular Pharmacology, 2006
In the past decade, researchers have defined committed stem or progenitor cells from various tissues, including bone marrow, peripheral blood, brain, liver and reproductive organs, in both adult animals and humans. Recently, endothelial progenitor cells (EPCs) were isolated from peripheral blood mononuclear cells and were shown to be incorporated into foci of neovascularization. This finding that circulating EPCs may home into sites of neovascularization and differentiate into mature endothelial cells in situ is consistent with the concept of 'vasculogenesis' and suggests that vasculogenesis and angiogenesis might constitute complementary mechanisms for postnatal neovascularization. Furthermore, experimental and clinical studies on ischemic cardiovascular diseases suggest a therapeutic potential for EPC transplantation. In this review, we summarize the biological features of EPCs and discuss their therapeutic potential for the treatment of cardiovascular diseases.
Endothelial Progenitor Cells: An Appraisal of Relevant Data from Bench to Bedside
International Journal of Molecular Sciences, 2021
The mobilization of endothelial progenitor cells (EPCs) into circulation from bone marrow is well known to be present in several clinical settings, including acute coronary syndrome, heart failure, diabetes and peripheral vascular disease. The aim of this review was to explore the current literature focusing on the great opportunity that EPCs can have in terms of regenerative medicine.
BioMed Research International, 2015
Advanced knowledge in the field of stem cell biology and their ability to provide a cue for counteracting several diseases are leading numerous researchers to focus their attention on “regenerative medicine” as possible solutions for cardiovascular diseases (CVDs). However, the lack of consistent evidence in this arena has hampered the clinical application. The same condition affects the research on endothelial progenitor cells (EPCs), creating more confusion than comprehension. In this review, this aspect is discussed with particular emphasis. In particular, we describe biology and physiology of EPCs, outline their clinical relevance as both new predictive, diagnostic, and prognostic CVD biomarkers and therapeutic agents, discuss advantages, disadvantages, and conflicting data about their use as possible solutions for vascular impairment and clinical applications, and finally underline a very crucial aspect of EPCs “characterization and definition,” which seems to be the real cause...