A quasi Curtis–Tits–Phan theorem for the symplectic group (original) (raw)
Abstract
AI
This study presents a quasi Curtis–Tits–Phan theorem applicable to symplectic groups by adapting Curtis-Phan-Tits theory to utilize pairs of almost opposite chambers corresponding under symplectic polarities. It explores the implications of this new approach for the recognition of symplectic groups, revealing connections to the simplification of certain geometries that emerge in the context of finite simple groups.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (19)
- Kenneth Baclawski. Cohen-Macaulay ordered sets. J. Algebra, 63(1):226- 258, 1980.
- C. D. Bennett, R. Gramlich, C. Hoffman, and S. Shpectorov. Curtis- Phan-Tits theory. In Groups, combinatorics & geometry (Durham, 2001), pages 13-29. World Sci. Publishing, River Edge, NJ, 2003.
- C. D. Bennett and S. Shpectorov. A new proof of a theorem of Phan. J. Group Theory, 7(3):287-310, 2004.
- R. J. Blok. The generating rank of the symplectic Grassmannians: hyperbolic and isotropic geometry. To appear in Europ. J. Comb.
- R. J. Blok and C. Hoffman. A Curtis-Phan-Tits theorem for U(k[t, t -1 ]). preprint.
- Francis Buekenhout. Foundations of incidence geometry. In Handbook of incidence geometry, pages 63-105. North-Holland, Amsterdam, 1995.
- H. Cuypers. Symplectic geometries, transvection groups, and modules. J. Comb. Theory Ser. A, 65:39-59, 1994.
- A. Devillers and B. Mühlherr. On the simple connectedness of certain subsets of buildings. Forum Math., to appear.
- Jon Folkman. The homology groups of a lattice. J. Math. Mech., 15:631-636, 1966.
- R. Gramlich. On the hyperbolic symplectic geometry. J. Comb. Theory Ser. A, 105:97-110, 2004.
- J. I. Hall. The hyperbolic lines of finite symplectic spaces. J. Comb. Theory Ser. A 47, 284-298, 1988.
- J. I. Hall. Graphs, geometry, 3-transpositions, and symplectic F 2 - transvection groups. Proc. London Math. Soc. 58, 89-111, 1989.
- A. Pasini. Diagram geometries. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1994.
- Daniel Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math., 28(2):101-128, 1978.
- Jean-Pierre Serre. Trees. Springer-Verlag, Berlin, 1980. Translated from the French by John Stillwell.
- Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York, 1981. Corrected reprint.
- E. Taylor, Donald. The geometry of the classical groups, volume 9 of Sigma Series in Pure Math. Heldermann, Berlin, 1st edition, 1992.
- J. Tits. Buildings of Spherical type and Finite BN-Pairs. Number 386 in Lecture Notes in Math. Springer, Berlin, second edition, 1986.
- J. Tits. Ensemples Ordonnés, immeubles et sommes amalgamées. Bull. Soc. Math. Belg. Sér A 38:367-387, 1986.