Equatorial stratospheric response to variations in deterministic and stochastic gravity wave parameterizations (original) (raw)
Abstract
1] The sensitivity of the equatorial stratospheric climate to variations in the gravity wave parameterization is examined in the Unified Model. Particular emphasis is placed on the response of the annual cycle and quasi-biennial oscillation of zonal winds. Two classes of variations are considered. The first consists of variations in the source strength of the classic deterministic formulation of a Doppler-spread Doppler-shifted gravity wave scheme. The second consists of variations in the probability density function of the source strength parameter in a stochastic formulation of the same scheme. The effects on stratospheric climate of variations in the source strength of a deterministic scheme can be predicted from theory. In such a scheme, when choosing the best possible value for the source strength, a trade-off between a proper representation of the quasi-biennial oscillation and the annual cycle is inevitable. Implementation of a stochastic source strength in the resident gravity wave scheme is justified by the need to better represent the intermittent nature of the convective generation of gravity waves. The most striking effect of the stochastic parameterization is the stabilization of the quasi-biennial oscillation in multidecadal simulations. We suggest that this is due to the ability of the stochastic gravity wave parameterization to deposit a larger portion of gravity wave drag in the middle stratosphere.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (25)
- Baldwin, M. P., et al. (2001), The quasi biennial oscillation, Rev. Geophys., 39(2), 179 -229.
- Buizza, R., M. J. Miller, and T. N. Palmer (1999), Stochastic simulation of model uncertainties in the ECMWF ensemble prediction system, Q. J. Meteorol. Soc., 125, 2887 -2908.
- Fritts, D. C., and M. J. Alexander (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), 1003, doi:10.1029/2001RG000106.
- Giorgetta, M. A., E. Manzini, and E. Roeckner (2002), Forcing of the quasi- biennial oscillation from a broad spectrum of atmospheric waves, Geo- phys. Res. Lett., 29(8), 1245, doi:10.1029/2002GL014756.
- Haynes, P. H. (1998), The latitudinal structure of the quasi-biennial oscilla- tion, Q. J. R. Meteorol. Soc., 124, 2645 -2670.
- Hines, C. O. (1997a), Doppler spreading parameterization of gravity-wave momentum deposition in the middle atmosphere. 1. Basic formulation, J. Atmos. Sol. Terr. Phys., 59, 371 -387.
- Hines, C. O. (1997b), Doppler spreading parameterization of gravity-wave momentum deposition in the middle atmosphere. 2. Broad and quasi- monochromatic spectra, and implementation, J. Atmos. Sol. Terr. Phys., 59, 387 -400.
- Holton, J. R., and H. C. Tan (1982), The quasi-biennial oscillation in the northern hemisphere lower stratosphere, J. Meteorol. Soc. Jpn., 60(1), 140 -148.
- Horinouchi, T., et al. (2003), Tropical cumulus convection and upward- propagating waves in middle-atmospheric GCMs, J. Atmos. Sci., 60, 2765 -2782.
- Lin, J. W.-B., and J. D. Neelin (2000), Influence of a stochastic moist convective parameterization on tropical climate variability, Geophys. Res. Lett., 27, 3691 -3694.
- Lin, J. W.-B., and J. D. Neelin (2002), Considerations for stochastic con- vective parameterization, J. Atmos. Sci., 59, 959 -975.
- Lin, J. W.-B., and J. D. Neelin (2003), Towards stochastic deep convective parameterizations in general circulation models, Geophys. Res. Lett., 30(4), 1162, doi:10.1029/2002GL016203.
- Lindzen, R. S., and J. R. Holton (1968), A theory of the quasi-biennial oscillation, J. Atmos. Sci., 25, 1095 -1107.
- Mohr, K. I., and E. J. Zipser (1996), Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents, Mon. Weather Rev., 124, 2417- 2437.
- Muller, K. M., U. Langematz, and S. Pawson (1997), The stratopause semiannual oscillation in the Berlin Troposphere-stratosphere- Mesosphere GCM, J. Atmos. Sci., 54, 2749 -2759.
- Neale, R., and J. Slingo (2003), The maritime continent and its role in the global climate: A GCM study, J. Clim., 16(5), 834 -848.
- Palmer, T. N. (2001), A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models, Q. J. R. Meteorol. Soc., 127, 279 -304.
- Piani, C. (2003), The equatorial stratospheric response to stochastic gravity- wave parameterizations, UGAMP Newsl., 27, 81 -82.
- Piani, C., D. Durran, M. J. Alexander, and J. R. Holton (2000), A numerical study of three-dimensional gravity waves triggered by deep tropical con- vection and their role in the dynamics of the QBO, J. Atmos. Sci., 57, 3689 -3702.
- Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton (2000), The impact of new physical parameterizations in the Hadley Centre climate model-HadAM3, Clim. Dyn., 16, 123 -146.
- Riciardulli, L., and R. R. Garcia (2000), The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3), J. Atmos. Sci., 57, 3461 -3487.
- Salby, M. L., and R. R. Garcia (1987), Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior, J. Atmos. Sci., 44, 458 -498.
- Sassi, F., R. R. Garcia, and B. A. Boville (1993), The stratopause semi- annual oscillation in the NCAR Community Climate Model, J. Atmos. Sci., 50, 3608 -3624.
- Scaife, A. A., N. Butchart, C. D. Warner, D. A. Stainforth, and W. A. Norton (2000), Realistic Quasi-Biennial Oscillations in a simulation of the Global Climate, Geophys. Res. Lett., 26, 3481 -3484.
- ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ À W. A. Norton, C. Piani, and D. A. Stainforth, Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Oxford University, Parks Road, Oxford, OX1 3PU, UK. (wan@atm.ox.ac.uk; cpiani@atm.ox.ac.uk;