Early detection and eradication of invading rats (original) (raw)
Related papers
Invasive rats on tropical islands: Their history, ecology, impacts and eradication
From their original ranges in Asia, black and brown rats (R. rattus and R. norvegicus) are now present across much of the world, including many island groups. They are among the most widespread and damaging invasive mammalian species in the world, known to cause significant ecological damage to a wide range of plant and animal species. Whilst their distribution is now global, this report focuses on their occurrence, ecology and impact within the tropics and reviews key factors relating to the eradication of these species from tropical islands based on both eradication successes and failures.
Invasive rat space use on tropical islands: Implications for bait broadcast
Basic and Applied Ecology, 2014
Invasive rats on oceanic islands impact a large number of native species. Control programmes, and in many cases complete eradication, are used to alleviate these impacts. Basic data on rodent biology facilitate the design of control or eradication programmes, and is particularly required for programmes on tropical islands where such data are missing. Here we test for interactive effects of habitat and season that may alter black rat (Rattus rattus) space use dynamics and inform rodent management on two tropical islands. Five years of summer and winter trapping data were analysed using spatially explicit capture-recapture to calculate rat space-use and overlap, coupled with spool and line experiments ground-truthing microhabitat use. Variation in individual rat space use is primarily driven by sex and bottom-up trophic effects of seasonal rainfall on food resources, but is altered by island-specific contexts. In the absence of other introduced mammals, rats tend to have stable range overlap throughout the year but home range sizes fluctuate seasonally with rat density. The presence of other introduced mammals causes predictable greater seasonal fluctuations in rat space-use, putatively a behavioural adjustment to feral cats (Felis catus) diet-switching to rats from seasonal influxes of their alternative seabird prey. We identify winter as the recommended treatment period on both islands and discuss bait broadcast strategies.
Modeling the strategies to eradicate rats introduced in the Galapagos Islands
Bionatura, 2020
The Galapagos Islands are well known for their incredible biodiversity and the inspiration for Charles Darwin's natural evolution theory. It is an ecosystem that has evolved without predators, so their native species are unfit for competition. As a result, this biodiversity has been threatened by invasive species like rats (Black and Norwegian). Nowadays, the primary strategy to control rats is by having drones that disperse a unique poisoned bait. Our study aims to mathematically model the strategies to eradicate rats in islands, based on previously reported processes. As a result, we are obtaining the approximated time to reduce its population as much as being eradicated, without threatening the coexisting species. We also propose a suitable alternative to be applied in the Galapagos Islands to recover their biodiversity richness. We find that rats' introduction has caused a decrease in the native species due to having specific traits that make them fitter in different sit...
Improved design method for biosecurity surveillance and early detection of non-indigenous rats
New Zealand Journal of Ecology
A recent advance in biosecurity surveillance design aims to benefit island conservation through early and improved detection of incursions by non-indigenous species. The novel aspects of the design are that it achieves a specified power of detection in a cost-managed system, while acknowledging heterogeneity of risk in the study area and stratifying the area to target surveillance deployment. The design also utilises a variety of surveillance system components, such as formal scientific surveys, trapping methods, and incidental sightings by non-biologist observers. These advances in design were applied to black rats (Rattus rattus) representing the group of invasive rats including R. norvegicus, and R. exulans, which are potential threats to Barrow Island, Australia, a high value conservation nature reserve where a proposed liquefied natural gas development is a potential source of incursions. Rats are important to consider as they are prevalent invaders worldwide, difficult to detect early when present in low numbers, and able to spread and establish relatively quickly after arrival. The 'exemplar' design for the black rat is then applied in a manner that enables the detection of a range of non-indigenous species of rat that could potentially be introduced. Many of the design decisions were based on expert opinion as data gaps exist in empirical data. The surveillance system was able to take into account factors such as collateral effects on native species, the availability of limited resources on an offshore island, financial costs, demands on expertise and other logistical constraints. We demonstrate the flexibility and robustness of the surveillance system and discuss how it could be updated as empirical data are collected to supplement expert opinion and provide a basis for adaptive management. Overall, the surveillance system promotes an efficient use of resources while providing defined power to detect early rat incursions, translating to reduced environmental, resourcing and financial costs.
Biological Invasions, 2005
We show the results of an eradication campaign against Rattus rattus developed in Rey Francisco Island (12 ha), Chafarinas islands, southwestern Mediterranean. Rat population size was estimated by snap trapping in up to 93.47 ind./ha and a trapping index of 9.58 captures/100 traps-night. We think that population was underestimated because of the number of traps found strung but without capture. Several products were tested in order to define the method of eradication. In 1992, we selected a second generation anticoagulant, pelleted brodifacoum 50 ppm into 5 l plastic containers as baiting stations. Bait consumption reached zero after three pulses, and intensive searching of tracks and signals were unsuccessful. After more than two years of absence of signals and sightings, in 1995, rat scats were observed in Rey Francisco, and the population rose dizzily. After several snap-trapping sessions in 1996, 1997 and 1999, when trapping success reached 37 captures/100 trap-nights, a new campaign started in autumn–winter 1999–2000 using flocoumafen 50 ppm inside 180 baiting stations. Eradication occurred with a very low risk for non-target fauna, setting less than 1 kg/ha of bait each time. Monitoring, both with snap traps and baiting at a lower intensity assures the absence of reinvasion.
Eradication of black rats Rattus rattus from Anacapa Island
2010
Removing invasive rats from islands is a powerful conservation tool, and practitioners are now targeting larger islands for rat eradication. As they do so, they face the challenge of mitigating for potential non-target impacts on native biodiversity that may be susceptible to rodenticides. We report on the eradication of black rats Rattus rattus from Anacapa Island, California, in 2001-2002, which was the first-ever invasive rodent eradication from an entire island where an endemic rodent was present and the first aerial application of a rodenticide in North America. As a mitigation strategy we staggered the rodenticide application over 2 years and held a representative sample of the Anacapa deer mouse Peromyscus maniculatus anacapae in captivity. We also mitigated for bird species potentially susceptible to brodifacoum poisoning and monitored aspects of the terrestrial and marine environments. The free-ranging native rodent population severely declined following rodenticide applications but reintroduction and translocation efforts were successful, and the population quickly recovered to pre-eradication levels. Non-target impacts also included mortality of raptors, gulls and passerines, including high mortality of rufous-crowned sparrows Aimophila ruficeps obscura despite planned mitigation. All observed non-target impacts are expected to be ephemeral; however, further monitoring should reveal details on the dynamics of those impacts. Brodifacoum was not detected in the marine environment or in significant amounts in terrestrial soil, plants and arthropods. Seabird benefits from the rat eradication were quickly realized.
ERADICATION OF BLACK RATS FROM ANACAPA ISLAND: BIOLOGICAL AND SOCIAL CONSIDERATIONS
The use of rodenticides to eradicate rats (Rattus spp.) from islands is a powerful tool for preventing extinctions of other species. This tool has been underutilized in North America where there have been less than 10 eradications. Furthermore, rat eradications in North America have deployed rodenticides by hand rather than aerial application from a helicopter as is common elsewhere. This limits eradication attempts to small islands with relatively flat topography. Aerial broadcast of a rodenticide was the only feasible method to eradicate the introduced Rattus rattus from the three islets which make up the 296 hectare Anacapa Island. After two years of planning, testing and monitoring, a 25-ppm brodifacoum bait was aerially applied to East Anacapa in December 2001, and to Middle and West Anacapa Island in November 2002. No rats have been detected anywhere on Anacapa since the application. Extensive mitigation measures, including holding native deer mice in captivity, and capturing ...
A review of methods for detecting rats at low densities, with implications for surveillance
Biological Invasions, 2023
Invasive rats are the biggest threat to island biodiversity worldwide. Though the ecological impacts of rats on insular biota are well documented, introduced rats present a difficult problem for detection and management. In recent decades, improved approaches have allowed for island-wide eradications of invasive rats on small-medium sized islands and suppression on large islands, although both these still represent a formidable logistical and financial challenge. A key aspect of eradication or suppression and ongoing management is the ability to detect the presence of rats, especially at low densities. Here we review recent developments in the field of rat surveillance and summarise current published literature to recommend practices and the factors to consider when developing a surveillance program for either eradication or suppression plans. Of 51 empirical studies covering 17 countries, 58% were from New Zealand. Although detecting rats at low density is extremely challenging, advances over the past 15 years, have significantly improved our ability to detect rats. Motion-sensored cameras and rodent detection dogs have greatly improved our ability to detect rats at low densities, with cameras consistently showing an ability to detect rats at lower densities than other techniques. Rodent detection dogs are also able to reliably detect even an individual rat, although there are challenges to their widespread adoption, particularly in developing countries, due to the cost and skills required for their training and maintenance. New monitoring devices, the use of eDNA and drones represent current and future innovations to improve detection.
Invasive Rodent Eradication on Islands
Conservation Biology, 2007
Invasive mammals are the greatest threat to island biodiversity and invasive rodents are likely responsible for the greatest number of extinctions and ecosystem changes. Techniques for eradicating rodents from islands were developed over 2 decades ago. Since that time there has been a significant development and application of this conservation tool. We reviewed the literature on invasive rodent eradications to assess its current state and identify actions to make it more effective. Worldwide, 332 successful rodent eradications have been undertaken; we identified 35 failed eradications and 20 campaigns of unknown result. Invasive rodents have been eradicated from 284 islands (47,628 ha). With the exception of two small islands, rodenticides were used in all eradication campaigns. Brodifacoum was used in 71% of campaigns and 91% of the total area treated. The most frequent rodenticide distribution methods (from most to least) are bait stations, hand broadcasting, and aerial broadcasting. Nevertheless, campaigns using aerial broadcast made up 76% of the total area treated. Mortality of native vertebrates due to nontarget poisoning has been documented, but affected species quickly recover to pre-eradication population levels or higher. A variety of methods have been developed to mitigate nontarget impacts, and applied research can further aid in minimizing impacts. Land managers should routinely remove invasive rodents from islands <100 ha that lack vertebrates susceptible to nontarget poisoning. For larger islands and those that require nontarget mitigation, expert consultation and greater planning effort are needed. With the exception of house mice (Mus musculus), island size may no longer be the limiting factor for rodent eradications; rather, social acceptance and funding may be the main challenges. To be successful, large-scale rodent campaigns should be integrated with programs to improve the livelihoods of residents, island biosecurity, and reinvasion response programs.
Rat Density on Diego Garcia: Implications for Eradication Feasibility
Proceedings of the Vertebrate Pest Conference
Introduced black rats are among the most invasive species to islands worldwide. In addition to agricultural impacts, rats are vectors of disease, cause damage to native flora and fauna, and negatively impact threatened/endangered species. Eradication efforts have met with mixed success. Success or failure of an eradication effort can depend on the population density of the target species, which can influence rodenticide sowing rates. We used snap trapping grids to estimate black rat densities in two different forest types on Diego Garcia: coconut forest and mixed species forest. Individual snap traps baited with fresh coconut were placed every 10 m in a 100-m × 100-m (1 ha) grid in the mixed forest and every 20 m in a 220-m × 220-m grid (4.8 ha) in the coconut forest. Traps were checked twice daily for 7 and 11 days in the mixed and coconut forest, respectively. In total, 914 rats were captured on the coconut forest grid and 125 rats were captured on the mixed forest grid. Rat density in coconut forest was 187 rats/ha (95% CI: 176-201) and 88 rats/ha (95% CI: 82-104) in mixed forest. Stomach contents were examined in 121 rats trapped in the mixed forest: 81% contained coconut along with other vegetation or meat, and 67% contained coconut exclusively. It is likely that the high rat density is driven by an abundant coconut food source resulting in a variable distribution of rats among habitat types. Planning for eradication will need to consider the variability of rodent densities across different habitats, with management strategies developed to address this variability.