Apolipoprotein J (clusterin) and Alzheimer's disease (original) (raw)

The cerebrospinal-fluid soluble form of Alzheimer's amyloid β is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex

Biochemical Journal, 1993

The amyloid fibrils deposited in Alzheimer's neuritic plaque cores and cerebral blood vessels are mainly composed of aggregated forms of a unique peptide, 39-42 amino acids long, named amyloid beta (A beta). A similar, although soluble, A beta (‘sA beta’) has been identified in cerebrospinal fluid, plasma and cell supernatants, indicating that it is normally produced by proteolytic processing of its precursor protein, amyloid precursor protein (APP). Using direct binding experiments we have isolated and characterized an 80 kDa circulating protein that specifically interacts with a synthetic peptide identical with A beta. The protein was unmistakably identified as SP-40,40 or ApoJ, a cytolytic inhibitor and lipid carrier, by means of amino acid sequence and immunoreactivity with specific antibodies. Immunoprecipitation with anti-SP-40,40 retrieved soluble A beta from cerebrospinal fluid, indicating that the interaction occurs in vivo.

Modulation of Amyloid-β1-40 Transport by ApoA1 and ApoJ Across an in vitro Model of the Blood-Brain Barrier

Journal of Alzheimer's disease : JAD, 2016

Amyloid-β (Aβ) accumulation in Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) is likely caused by the impairment of its brain clearance that partly occurs through the blood-brain barrier (BBB). In this context, an in vitro BBB model is a valuable tool for studying the molecular mechanisms that regulate this process. This study assessed brain Aβ elimination across the BBB and its modulation by the natural chaperones Apolipoprotein A1 (ApoA1) and Apolipoprotein J/Clusterin (ApoJ). The model was based on primary cerebral endothelial cells that were cultured on Matrigel-coated Transwells and treated with fluorescently labeled-Aβ1-40 to track its efflux across the BBB, which corresponds to trafficking from the basolateral (brain) to apical (blood) compartments. We observed that the transport of basolateral Aβ1-40 was enhanced when it was complexed to rApoJ, whereas the complex formed with rApoA1 did not influence Aβ1-40 efflux. However, the presence of rApoA1 in the a...

Amyloid-β 1–42 induced endocytosis and clusterin/apoJ protein accumulation in cultured human astrocytes

Neurochemistry International, 2007

Recent studies indicate that astrocytes may be the primary target of secreted amyloid-beta 1-42 peptides, with the neurotoxicity representing a secondary response to astrocytic stress. Our purpose was to clarify the astrocytic stress response induced by amyloid-beta peptides in human and rat astrocytes. Human amyloid-beta 1-42 peptides and fibrils induced the appearance of cytoplasmic vacuoles in normal human astrocytes (NHA) and CCFsttg1 astrocytoma cells. Vacuoles appeared 9-12h after the amyloid-beta exposure and remained present for several days. Rat primary neonatal astrocytes showed similar but less prominent vacuolar response. Human amyloid-beta peptides 1-16, 1-28, 10-20, 17-21 and 25-35 did not cause vacuole formation. Electron microscopic observations revealed large endocytic vacuoles containing fibrillar amyloid material. Stress marker analysis did not show any increase in protein levels of HSP70, HSP90, GRP78 and GRP94. However, the protein level of clusterin/apoJ, a secreted chaperone, was strongly increased both in NHA and CCFsttg1 astrocytes. Endocytic response associated with the accumulation of clusterin/apoJ protein suggests that clusterin/apoJ has a role in the clearance of amyloid-beta peptides.