Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood (original) (raw)

The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight

Molecular Metabolism

Objective: Regulation of food intake and energy balance depends on a group of hypothalamic neurons that release anorexigenic melanocortins encoded by the Pomc gene. Although the physiological importance of central melanocortins is well appreciated, the genetic program that defines the functional identity of melanocortin neurons and assures high levels of hypothalamic Pomc expression is only beginning to be understood. This study assessed whether the transcriptional regulator PRDM12, identified as a highly expressed gene in adult mouse POMC neurons, plays an important role in the identity and function of melanocortin neurons. Methods: We first determined the cellular distribution of PRDM12 in the developing hypothalamus. Then we studied mutant mice with constitutively inactivated Prdm12 to evaluate possible changes in hypothalamic Pomc expression. In addition, we characterized conditional mutant mice specifically lacking Prdm12 in ISL1-positive or POMC neurons during development. Finally, we measured food intake, body weight progression up to 16 weeks of age, adiposity, and glucose tolerance in adult mice lacking Prdm12 selectively from POMC neurons. Results: PRDM12 co-expressed with POMC in mouse hypothalamic neurons from early development to adulthood. Mice lacking Prdm12 displayed greatly reduced Pomc expression in the developing hypothalamus. Selective ablation of Prdm12 from ISL1 neurons prevented hypothalamic Pomc expression. The conditional ablation of Prdm12 limited to POMC neurons greatly reduced Pomc expression in the developing hypothalamus and in adult mice led to increased food intake, adiposity, and obesity. Conclusions: Altogether, our results demonstrate that PRDM12 plays an essential role in the early establishment of hypothalamic melanocortin neuron identity and the maintenance of high expression levels of Pomc. Its absence in adult mice greatly impairs Pomc expression and leads to increased food intake, adiposity, and obesity.

Pro-opiomelanocortin gene transfer to the nucleus of the solitary track but not arcuate nucleus ameliorates chronic diet-induced obesity

Neuroscience, 2010

Short-term pharmacological melanocortin activation deters diet-induced obesity (DIO) effectively in rodents. However, whether central pro-opiomelanocortin (POMC) gene transfer targeted to the hypothalamus or hindbrain nucleus of the solitary track (NTS) can combat chronic dietary obesity has not been investigated. Four-week-old Sprague Dawley rats were fed a high fat diet for five months, and then injected with either the POMC or control vector into the hypothalamus or NTS, and body weight and food intake recorded for 68 days. Insulin sensitivity, glucose metabolism and adrenal indicators of central sympathetic activation were measured, and voluntary wheel running (WR) assessed. Whereas the NTS POMC-treatment decreased cumulative food consumption and caused sustained weight reduction over 68 days, the hypothalamic POMC-treatment did not alter cumulative food intake and produced weight loss only in the first 25 days. At death, only the NTS-POMC rats had a significant decrease in fat mass. They also displayed enhanced glucose tolerance, lowered fasting insulin and increased QUICK value, and elevated adrenal indicators of central sympathetic activation. Moreover, the NTS-POMC animals exhibited a near 20% increase in distance ran relative to the respective controls, but the ARC-POMC rats did not. In conclusion, POMC gene transfer to the NTS caused modest anorexia, persistent weight loss, improved insulin sensitivity, and increased propensity for WR in DIO rats. These metabolic improvements may involve stimulation of energy expenditure via centrally regulated sympathetic outflow. The similar POMC treatment in the hypothalamus had minimal long-term physiological or metabolic impact. Thus, melanocortin activation in the brainstem NTS region effectively ameliorates chronic dietary obesity whilst that in the hypothalamus fails to do so.

Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions

International journal of obesity (2005), 2011

Reduction of melanocortin signaling in the brain results in obesity. However, where in the brain reduced melanocortin signaling mediates this effect is poorly understood. We determined the effects of long-term inhibition of melanocortin receptor activity in specific brain regions of the rat brain. Melanocortin signaling was inhibited by injection of a recombinant adeno-associated viral (rAAV) vector that overexpressed Agouti-related peptide (AgRP) into the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), the lateral hypothalamus (LH) or the accumbens shell (Acc). Overexpression of AgRP in the rat PVN, VMH or LH increased bodyweight, the percentage of white adipose tissue, plasma leptin and insulin concentrations and food intake. Food intake was mainly increased because of an increase in meal size in the light and dark phases, after overexpression of AgRP in the PVN, LH or VMH. Overexpression of AgRP in the PVN or VMH reduced average body core temperature in the da...

Hyperphagia, not hypometabolism, causes early onset obesity in melanocortin-4 receptor knockout mice

Physiological genomics, 2003

Previous studies on mice with melanocortin-4 receptor gene (MC4r) knockout have focused on obese adults. Because humans with functional MC4r mutations show early-onset obesity, we determined the onset of excessive fat deposition in 10- to 56-day-old mice, taking into account sex and litter influences. Total body fat content of MC4r-/- on day 35 and MC4r+/- on day 56 significantly exceeds that of MC4r+/+. Plasma leptin levels increase in proportion to fat mass. According to cumulative food intake and energy expenditure measurements from day 21 to 35, onset of excessive fat deposition in MC4r-/- is fueled by hyperphagia and counteracted partially by hypermetabolism. In 35- to 56-day-old mice, arcuate nucleus neuropeptide Y (NPY) mRNA decreases and pro-opiomelanocortin (POMC) mRNA increases with fat content and plasma leptin levels independently of genotype. Taking into account fat content by ANCOVA reveals, however, increases in both NPY mRNA and POMC mRNA due to melanocortin-4 recept...

The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models

QJM, 2000

The peptide products of the pro-opiomelanocortin ocortin receptors, the MC4R has been most closely linked to body weight regulation. While a-MSH is (POMC) gene have established roles in the control of physiological processes as diverse as adrenal ster-active at this receptor and suppresses appetite after central injection, important roles for other POMC-oidogenesis, skin pigmentation, analgesia and inflammation. In the last 5 years, evidence accumu-derived products have not been excluded. The development of pharmacological agonists acting on, or lated from murine and human genetic models of disrupted melanocortin signalling has firmly estab-mimicking, the hypothalamic melanocortinergic pathway may provide exciting opportunities for the lished a central role for a population of hypothalamic neurons expressing POMC in the control of therapy of human obesity.

Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity

Proceedings of the National Academy of Sciences, 2010

The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis. synaptic plasticity | brain | inflammation | vulnerability | high-fat diet E fficient and safe pharmacologic options for the prevention and cure of obesity remain elusive. One reason for this failure is the incomplete understanding of the pathogenesis of obesity. A classic example of this is the lack of clarity regarding the molecular reasons why most individuals are prone, but some are resistant, to the obesogenic effects of a high-calorie diet. The currently favored model of molecular body weight control suggests that specific circuitry within the central nervous system (CNS) coordinates peripheral energy metabolism in response to constant input by environmental stimuli, circulating macronutrients, and afferent endocrine signaling (1).

Faculty of 1000 evaluation for Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits

F1000 - Post-publication peer review of the biomedical literature, 2010

Hypothalamic circuits regulating energy balance are highly plastic and develop in response to nutrient and hormonal cues. To identify processes that could be susceptible to gestational influences in the mouse, we characterized the ontogeny of proopiomelanocortin (POMC) and neuropeptide Y (NPY) populations, which exert opposing influences on food intake and body weight. These analyses revealed that Pomc is broadly expressed in immature hypothalamic neurons and that half of embryonic Pomc-expressing precursors subsequently adopt a non-POMC fate in the adult. Moreover, nearly one quarter of the mature orexigenic NPY population shares a common progenitor with anorexigenic POMC neurons.

Metabolic and melanocortin gene expression alterations in male offspring of obese mice

Molecular and cellular …, 2010

To study the consequences of maternal obesity during gestation and suckling periods on metabolic features and expression of genes belonging to the melanocortinergic system, we developed Diet-Induced-Obesity (DIO) in mice fed high-fat-diet (HFD). After weaning, F1-descendants were fed the same diet than dams up to 16 weeks or received a 2-week standard chow at several time points. From birth, F1-DIO displayed higher body weight than F1-control. Hyperinsulinemia, hypertriglyceridemia, hyperleptinemia were detected from P10 and fasting hyperglycaemia from 2 week-post-weaning. From late gestation to 16-week-post-weaning the expression of MC4-R gene and/or the POMC/AgRP ratio was increased, suggesting an activation of this pathway to compensate the deleterious effects of HFD. Standard chow replacement at weaning normalized metabolic status but a partial recovery was obtained for later changes. Concomitant variations in the expression of the melanocortinergic genes were observed. Therefore, early nutritional intervention could override the impact of maternal and postnatal over-nutrition.

Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity

The Journal of clinical investigation, 2018

Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron-specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggre...

Divergence of Melanocortin Pathways in the Control of Food Intake and Energy Expenditure

Cell, 2005

Activation of melanocortin-4-receptors (MC4Rs) reduces body fat stores by decreasing food intake and increasing energy expenditure. MC4Rs are expressed in multiple CNS sites, any number of which could mediate these effects. To identify the functionally relevant sites of MC4R expression, we generated a loxPmodified, null Mc4r allele (loxTB Mc4r) that can be reactivated by Cre-recombinase. Mice homozygous for the loxTB Mc4r allele do not express MC4Rs and are markedly obese. Restoration of MC4R expression in the paraventricular hypothalamus (PVH) and a subpopulation of amygdala neurons, using Sim1-Cre transgenic mice, prevented 60% of the obesity. Of note, increased food intake, typical of Mc4r null mice, was completely rescued while reduced energy expenditure was unaffected. These findings demonstrate that MC4Rs in the PVH and/or the amygdala control food intake but that MC4Rs elsewhere control energy expenditure. Disassociation of food intake and energy expenditure reveals unexpected divergence in melanocortin pathways controlling energy balance.