From the Cover: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients (original) (raw)

Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients

Proceedings of the National Academy of Sciences, 2008

A decrease in the abundance and biodiversity of intestinal bacteria within the dominant phylum Firmicutes has been observed repeatedly in Crohn disease (CD) patients. In this study, we determined the composition of the mucosa-associated microbiota of CD patients at the time of surgical resection and 6 months later using FISH analysis. We found that a reduction of a major member of Firmicutes, Faecalibacterium prausnitzii, is associated with a higher risk of postoperative recurrence of ileal CD. A lower proportion of F. prausnitzii on resected ileal Crohn mucosa also was associated with endoscopic recurrence at 6 months. To evaluate the immunomodulatory properties of F. prausnitzii we analyzed the anti-inflammatory effects of F. prausnitzii in both in vitro (cellular models) and in vivo [2,4,6trinitrobenzenesulphonic acid (TNBS)-induced] colitis in mice. In Caco-2 cells transfected with a reporter gene for NF-B activity, F. prausnitzii had no effect on IL-1␤-induced NF-B activity, whereas the supernatant abolished it. In vitro peripheral blood mononuclear cell stimulation by F. prausnitzii led to significantly lower IL-12 and IFN-␥ production levels and higher secretion of IL-10. Oral administration of either live F. prausnitzii or its supernatant markedly reduced the severity of TNBS colitis and tended to correct the dysbiosis associated with TNBS colitis, as demonstrated by real-time quantitative PCR (qPCR) analysis. F. prausnitzii exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-B activation and IL-8 production. These results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment.

Faecalibacterium prausnitzii prevents physiological damage in a chronic low-grade inflammation murine model

BMC Microbiology, 2015

The human gut houses one of the most complex and abundant ecosystems composed of up to 10 13 -10 14 microorganisms. The importance of this intestinal microbiota is highlighted when a disruption of the intestinal ecosystem equilibrium appears (a phenomenon called dysbiosis) leading to an illness status, such as inflammatory bowel diseases (IBD). Indeed, the reduction of the commensal bacterium Faecalibacterium prausnitzii (one of the most prevalent intestinal bacterial species in healthy adults) has been correlated with several diseases, including IBD, and most importantly, it has been shown that this bacterium has anti-inflammatory and protective effects in pre-clinical models of colitis. Some dysbiosis disorders are characterized by functional and physiological alterations. Here, we report the beneficial effects of F. prausnitzii in the physiological changes induced by a chronic low-grade inflammation in a murine model. Chronic low-grade inflammation and gut dysfunction were induced in mice by two episodes of dinitro-benzene sulfonic acid (DNBS) instillations. Markers of inflammation, gut permeability, colonic serotonin and cytokine levels were studied. The effects of F. prausnitzii strain A2-165 and its culture supernatant (SN) were then investigated.

Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway

Frontiers in microbiology, 2017

Faecalibacterium prausnitzii and its supernatant showed protective effects in different chemically-induced colitis models in mice. Recently, we described 7 peptides found in the F. prausnitzii supernatant, all belonging to a protein called Microbial Anti-inflammatory Molecule (MAM). These peptides were able to inhibit NF-κB pathway in vitro and showed anti-inflammatory properties in vivo in a DiNitroBenzene Sulfate (DNBS)-induced colitis model. In this current proof we tested MAM effect on NF-κB pathway in vivo, using a transgenic model of mice producing luciferase under the control of NF-κB promoter. Moreover, we tested this protein on Dextran Sodium Sulfate (DSS)-induced colitis in mice. To study the effect of MAM we orally administered to the mice a Lactococcus lactis strain carrying a plasmid containing the cDNA of MAM under the control of a eukaryotic promoter. L. lactis delivered plasmids in epithelial cells of the intestinal membrane allowing thus the production of MAM direct...

Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease?

FEMS Microbiology Letters, 2010

Reports that bacteria within the Firmicutes phylum, especially the species Faecalibacterium prausnitzii, are less abundant in Crohn's disease (CD) patients and supernatants from cultures of this bacterium are anti-inflammatory prompted the investigation of the possible correlations between the abundance of F. prausnitzii and the response to treatment in patients with gut diseases and healthy controls. In a randomized, double-blind trial, faeces were collected from healthy volunteers, and from patients with active CD, ulcerative colitis (UC) and irritable bowel syndrome before and after treatment. The levels of F. prausnitzii DNA in faecal suspensions were determined by PCR. Treatment by an elemental diet was effective, resulting in decreases in both the Harvey and Bradshaw index (P o 0.001) and the concentrations of serum C-reactive protein (P o 0.05). The total levels of F. prausnitzii in faecal samples from CD patients at presentation were lower than those in the other groups both before and after the treatment. There was no correlation between F. prausnitzii abundance and the severity of CD before treatment. Clinical improvement unexpectedly correlated with a significant decrease in the abundance of F. prausnitzii, especially the A2-165 subgroup (P o 0.05). Our data suggest that a paucity of F. prausnitzii in the gastrointestinal microbial communities is likely to be a minor aetiological factor in CD: recovery following elemental diet is attributed to lower levels of gut flora.

Lactobacillus fermentum CECT 5716 prevents and reverts intestinal damage on TNBS-induced colitis in mice

Inflammatory Bowel Diseases, 2009

Background: Probiotics attenuate gut inflammation when administered before experimental colitis, but data on their effect after colitis induction are scarce. We aimed to evaluate the effects of Lactobacillus fermentum CECT 5716 on gut injury when administered either before or after trinitrobencene sulfonic acid (TNBS) colitis in Balb/c mice. Methods: In a preventive study, probiotic or vehicle was administered for 2 weeks before colitis. Then mice were allocated to: probiotic ϩ TNBS, probiotic ϩ sham, vehicle ϩ TNBS, or vehicle ϩ sham, and sacrificed 72 hours later. In a therapeutic study, mice were allocated into the same groups as before. Probiotic or vehicle were administered for 3 weeks. Mice were sacrificed at weeks 1, 2, and 3 after TNBS. Histological score, myeloperoxidase activity, and eicosanoid and cytokine production in colonic explant cultures were measured. Immunohistochemistry for nitrotyrosine and MyD88 was also performed. Results: In the preventive study, colitis was milder with probiotic than with vehicle (P ϭ 0.041). This was associated with increased PGE 2 , IL-2, and IL-4 production, as well as attenuated nitrotyrosine staining in the former. In the therapeutic study, histological score at week 1 post-TNBS was higher in probiotic than in vehicle fed mice (P ϭ 0.018). However, at weeks 2 and 3 the histological score was significantly lower-with decreased IL-6 production and increased MyD88 staining-in mice receiving the probiotic. Conclusions: Pretreatment with L. fermentum CECT 5716 attenuates TNBS colitis, an effect that seems to be due to its antioxidant abilities. When administered after TNBS, this probiotic is also effective in accelerating colitis recovery, and this is associated with an enhanced Toll-like receptor function.

Faecalibacterium prausnitzii and human intestinal health

Current Opinion in Microbiology, 2013

Faecalibacterium prausnitzii is the most abundant bacterium in the human intestinal microbiota of healthy adults, representing more than 5% of the total bacterial population. Over the past five years, an increasing number of studies have clearly described the importance of this highly metabolically active commensal bacterium as a component of the healthy human microbiota. Changes in the abundance of F. prausnitzii have been linked to dysbiosis in several human disorders. Administration of F. prausnitzii strain A2-165 and its culture supernatant have been shown to protect against 2,4,6trinitrobenzenesulfonic acid (TNBS)-induced colitis in mice. Here, we discuss the role of F. prausnitzii in balancing immunity in the intestine and the mechanisms involved.

Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis

Scandinavian journal of gastroenterology, 2013

Objective. The intestinal microbiota plays a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Faecalibacterium prausnitzii (FP) is underrepresented in IBD patients and have been suggested to have anti-inflammatory effects in mice. Increased intestinal permeability is common in IBD but the relationship between FP and intestinal barrier function has not been investigated. Our aim was to study treatment with FP supernatant on intestinal barrier function in a dextran sodium sulfate (DSS) colitis mice model. Material and methods. C57BL/6 mice received 3% DSS in tap water ad libitum during five days to induce colitis. From day 3 the mice received a daily gavage with FP supernatant or broth during seven days. Ileum and colon were mounted in Ussing chambers for permeability studies with 51 Cr-EDTA and Escherichia coli K-12. Colon was saved for Western blot analyses of tight junction proteins. Results. DSS-treated mice showed significant weight loss and colon shortening. Gavage with FP supernatant resulted in a quicker recovery after DSS treatment and less extensive colonic shortening. Ileal mucosa of DSS mice showed a significant increase in 51 Cr-EDTA-passage compared to controls. 51 Cr-EDTA passage was significantly decreased in mice receiving FP supernatant. No significant differences were observed in passage of E. coli K12. Western blots showed a trend to increased claudin-1 and claudin-2 expressions in DSS mice. Conclusions. Supernatant of FP enhances the intestinal barrier function by affecting paracellular permeability, and may thereby attenuate the severity of DSS-induced colitis in mice. These findings suggest a potential role of FP in the treatment of IBD.

Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii

mBio, 2015

Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable and stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge....