Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening (original) (raw)
Related papers
The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity
Frontiers in Neuroscience, 2018
The developing central nervous system and the blood brain barrier are especially vulnerable and sensitive to different chemicals, including environmental contaminants and drugs. Developmental exposure to these compounds has been involved in several neurological disorders, such as autism spectrum disorders as well as Alzheimer's and Parkinson's diseases. Zebrafish (Danio Rerio) have emerged as powerful toxicological model systems that can speed up chemical hazard assessment and can be used to extrapolate neurotoxic effects that chemicals have on humans. Zebrafish embryos and larvae are convenient for high-throughput screening of chemicals, due to their small size, low-cost, easy husbandry, and transparency. Additionally, zebrafish are homologous to other higher order vertebrates in terms of molecular signaling processes, genetic compositions, and tissue/organ structures as well as neurodevelopment. This mini review underlines the potential of the zebrafish as complementary models for developmental neurotoxicity screening of chemicals and describes the different endpoints utilized for such screening with some studies illustrating their use.
Zebrafish as potential model for developmental neurotoxicity testing
Neurotoxicology and Teratology, 2012
The zebrafish is a powerful toxicity model; biochemical assays can be combined with observations at a structural and functional level within one individual. This mini review summarises the potency of zebrafish as a model for developmental neurotoxicity screening, and its possibilities to investigate working mechanisms of toxicants. The use of zebrafish in toxicity research can ultimately lead to the refinement or reduction of animal use.
Zebrafish as potential model for developmental neurotoxicity testing: A mini review
The zebrafish is a powerful toxicity model; biochemical assays can be combined with observations at a structural and functional level within one individual. This mini review summarises the potency of zebrafish as a model for developmental neurotoxicity screening, and its possibilities to investigate working mechanisms of toxicants. The use of zebrafish in toxicity research can ultimately lead to the refinement or reduction of animal use.
Environmental science and pollution research international, 2018
In order to develop a test battery based on a variety of neurological systems in fish, three sensory systems (vision, olfaction, and lateral line) as well as nerve transmission (acetylcholine esterase) were analyzed in zebrafish (Danio rerio) embryos with respect to their suitability as a model for the screening of neurotoxic trace substances in aquatic ecosystems. As a selection of known or putative neurotoxic compounds, amidotrizoic acid, caffeine, cypermethrin, dichlorvos, 2,4-dinitrotoluene, 2,4-dichlorophenol, 4-nonylphenol, perfluorooctanoic acid, and perfluorooctane sulfonic acid were tested in the fish embryo test (OECD test guideline 236) to determine EC values, which were then used as maximum test concentration in subsequent neurotoxicity tests. Whereas inhibition of acetylcholinesterase was investigated biochemically both in vivo and in vitro (ex vivo), the sensory organs were studied in vivo by means of fluorescence microscopy and histopathology in 72- or 96-h-old zebraf...