Refinement of optical imaging spectroscopy algorithms using concurrent BOLD and CBV fMRI (original) (raw)

Concurrent fMRI and optical measures for the investigation of the hemodynamic response function

Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 2005

Functional magnetic resonance imaging (fMRI) signal variations are based on a combination of changes in cerebral blood flow (CBF) and volume (CBV), and blood oxygenation. We investigated the relationship between these hemodynamic parameters in the rodent barrel cortex by performing fMRI concurrently with laser Doppler flowmetry (LDF) or optical imaging spectroscopy (OIS), following whisker stimulation and hypercapnic challenge. A difference between the positions of the maximum blood oxygenation level-dependent (BOLD) and CBV changes was observed in coronal fMRI maps, with the BOLD region being more superficial. A 6.5% baseline blood volume fraction in this superficial region dropped to 4% in deeper cortical layers (corresponding to total hemoglobin baseline volumes Hbt0 = 110 microM and 67 microM, respectively), as inferred from maps of deltaR2*. Baseline volume profiles were used to parameterize the Monte Carlo simulations (MCS) to interpret the 2D OIS. From this it was found that ...

Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model

Biophysical Journal, 1993

It recently has been demonstrated that magnetic resonance imaging can be used to map changes in brain hemodynamics produced by human mental operations. One method under development relies on blood oxygenation level-dependent (BOLD) contrast: a change in the signal strength of brain water protons produced by the paramagnetic effects of venous blood deoxyhemoglobin. Here we discuss the basic quantitative features of the observed BOLD-based signal changes, including the signal amplitude and its magnetic field dependence and dynamic effects such as a pronounced oscillatory pattern that is induced in the signal from primary visual cortex during photic stimulation experiments. The observed features are compared with the results of Monte Carlo simulations of water proton intravoxel phase dispersion produced by local field gradients generated by paramagnetic deoxyhemoglobin in nearby venous blood vessels. The simulations suggest that the effect of water molecule diffusion is strong for the case of blood capillaries, but, for larger venous blood vessels, water diffusion is not an important determinant of deoxyhemoglobin-induced signal dephasing. We provide an expression for the apparent in-plane relaxation rate constant (R*) in terms of the main magnetic field strength, the degree of the oxygenation of the venous blood, the venous blood volume fraction in the tissue, and the size of the blood vessel.

Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging

1993

It recently has been demonstrated that magnetic resonance imaging can be used to map changes in brain hemodynamics produced by human mental operations. One method under development relies on blood oxygenation level-dependent (BOLD) contrast: a change in the signal strength of brain water protons produced by the paramagnetic effects of venous blood deoxyhemoglobin. Here we discuss the basic quantitative features of the observed BOLD-based signal changes, including the signal amplitude and its magnetic field dependence and dynamic effects such as a pronounced oscillatory pattern that is induced in the signal from primary visual cortex during photic stimulation experiments. The observed features are compared with the results of Monte Carlo simulations of water proton intravoxel phase dispersion produced by local field gradients generated by paramagnetic deoxyhemoglobin in nearby venous blood vessels. The simulations suggest that the effect of water molecule diffusion is strong for the case of blood capillaries, but, for larger venous blood vessels, water diffusion is not an important determinant of deoxyhemoglobin-induced signal dephasing. We provide an expression for the apparent in-plane relaxation rate constant (R*) in terms of the main magnetic field strength, the degree of the oxygenation of the venous blood, the venous blood volume fraction in the tissue, and the size of the blood vessel.

Simultaneous Recording of Cerebral Blood Oxygenation Changes During Human Brain Activation by Magnetic Resonance Imaging and Near-Infrared Spectroscopy

Journal of Cerebral Blood Flow & Metabolism, 1996

Changes in cerebral blood oxygenation due to functional activation of the primary sensorimotor cortex during a unilateral finger opposition task were simultaneously mapped by deoxyhemoglobin-sensitive magnetic resonance imaging (MRI) and monitored by near-infrared spectroscopy (NIRS). Activation foci along the contralateral central sulcus displayed task-associated increases in MRI signal intensity, indicating a concomitant decrease of the focal concentration of deoxyhemoglobin. This interpretation was confirmed by simultaneous reductions in deoxyhemoglobin measured optically. Since observation of the latter effect required exact spatial matching of the MRI-detected activation foci and position of the fiber optic bundles ("optodes") used for transmitting and receiving light, it may be concluded that optical recordings of changes in deoxyhemoglobin during functional challenge probe only a restricted brain tissue region. While deoxyhemoglobin responses seen by NIRS were smaller for ipsithan for contralateral finger movements, task-related increases in oxyhemoglobin were rather similar between both conditions and, thus, seem to be less specific. Furthermore, no consistent changes were obtained for total hemoglobin during task performance, possibly due to the short timing of the repetitive protocol. In general, results underline, in humans, the hitherto assumed signal physiology for functional brain mapping by oxygenationsensitive MRI and allow assessment of both constraints and practicability of functional studies by NIRS.

The study of cerebral hemodynamic and neuronal response to visual stimulation using simultaneous NIR optical tomography and BOLD fMRI in humans

The integration of near-infrared (NIR) and functional MRI (fMRI) studies is potentially a powerful method to investigate the physiological mechanism of human cerebral activity. However, current NIR methodologies do not provide adequate accuracy of localization and are not fully integrated with MRI in the sense of mutual enhancement of the two imaging modalities. Results are presented to address these issues by developing an MRI-compatible optical probe and using diffuse optical tomography for optical image reconstruction. We have developed a complete methodology that seamlessly integrates NIR tomography with fMRI data acquisition. In this paper, we apply this methodology to determine both hemodynamic and early neuronal responses in the visual cortex in humans. Early results indicate that the changes in deoxyhemoglobin concentration from optical data are co-localized with fMRI BOLD signal changes, but changes in oxyhemoglobin concentration (not measurable using fMRI) show interesting spatial differences.

The roles of changes in deoxyhemoglobin concentration and regional cerebral blood volume in the fMRI BOLD signal

NeuroImage, 2003

To study the behavior of cerebral physiological parameters and to further the understanding of the functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent (BOLD) effect, multisource frequency-domain near-infrared and BOLD fMRI signals were recorded simultaneously during motor functional activation in humans. From the near-infrared data information was obtained on the changes in cerebral blood volume and oxygenation. To relate our observations to changes in cerebral blood flow the well-known "balloon" model was employed. Our data showed that the deoxyhemoglobin concentration is the major factor determining the time course of the BOLD signal. The increase in cerebral blood oxygenation during functional activation is due to an increase in the velocity of blood flow, and occurs without significant swelling of the blood vessels.

Changes of cerebral blood oxygenation and optical pathlength during activation and deactivation in the prefrontal cortex measured by time-resolved near infrared spectroscopy

To determine the alterations in optical characteristics and cerebral blood oxygenation (CBO) during activation and deactivation, we evaluated the changes in mean optical pathlength (MOP) and CBO induced by a verbal fluency task (VFT) and driving simulation in the right and left prefrontal cortex (PFC), employing a newly developed time-resolved near infrared spectroscopy, which allows quantitative measurements of the evoked-CBO changes by determining the MOP with a sampling time of 1 s. The results demonstrated differences in MOP in the foreheads with the subjects and wavelength; however, there was no significant difference between the right and left foreheads ( p > 0.05). Also, both the VFT and driving simulation task did not affect the MOP significantly as compared to that before the tasks ( p > 0.05). In the bilateral PFCs, the VFT caused increases of oxyhemoglobin and total hemoglobin associated with a decrease of deoxyhemoglobin, while the driving simulation task caused decreases of oxyhemoglobin and total hemoglobin associated with an increase of deoxyhemoglobin; there were no significant differences in evoked-CBO changes between the right and left PFC. The present results will be useful for quantitative measurement of hemodynamic changes during activation and deactivation in the adults by near infrared spectroscopy. D

Analysis of near-infrared spectroscopy and indocyanine green dye dilution with Monte Carlo simulation of light propagation in the adult brain

Journal of Biomedical Optics, 2006

Near-infrared spectroscopy ͑NIRS͒ combined with indocyanine green ͑ICG͒ dilution is applied externally on the head to determine the cerebral hemodynamics of neurointensive care patients. We applied Monte Carlo simulation for the analysis of a number of problems associated with this method. First, the contamination of the optical density ͑OD͒ signal due to the extracerebral tissue was assessed. Second, the measured OD signal depends essentially on the relative blood content ͑with respect to its absorption͒ in the various transilluminated tissues. To take this into account, we weighted the calculated densities of the photon distribution under baseline conditions within the different tissues with the changes and aberration of the relative blood volumes that are typically observed under healthy and pathologic conditions. Third, in case of NIRS ICG dye dilution, an ICG bolus replaces part of the blood such that a transient change of absorption in the brain tissues occurs that can be recorded in the OD signal. Our results indicate that for an exchange fraction of ⌬ = 30% of the relative blood volume within the intracerebral tissue, the OD signal is determined from 64 to 74% by the gray matter and between 8 to 16% by the white matter maximally for a distance of d = 4.5 cm.

Multimodal measurements of blood plasma and red blood cell volumes during functional brain activation

Journal of Cerebral Blood Flow & Metabolism, 2009

As an alternative to functional magnetic resonance imaging (fMRI) with blood oxygenation level dependent (BOLD) contrast, cerebral blood volume (CBV)-weighted fMRI with intravascular contrast agents in animal models have become popular. In this study, dynamic measurements of CBV were performed by magnetic resonance imaging (MRI) and laser-Doppler flowmetry (LDF) in αchloralose anesthetized rats during forepaw stimulation. All recordings were localized to the contralateral primary somatosensory cortex as revealed by BOLD at 11.7 T. Ultra-small superparamagnetic iron oxide (15 mg/kg)-a plasma-borne MRI contrast agent with a half-life of several hours in blood circulation-was used to quantify changes in magnetic field inhomogeneity in blood plasma. The LDF backscattered laser light (805 nm), which reflects the amount of red blood cells, was used to measure alterations in the non-plasma compartment. Dynamic and layer-specific comparisons of the two CBV signals during functional hyperemia revealed excellent correlations (>0.86). These results suggest that CBV measurements from either compartment may be used to reflect dynamic changes in total CBV. Furthermore, by assuming steady-state mass balance and negligible counter flow, these results indicate that volume hematocrit is not appreciably affected during functional activation.

CHAPTER 16. In vivo Brain Functional Imaging Using Oxygenation-related Optical Signal

Quenched-phosphorescence Detection of Molecular Oxygen, 2018

Over the last two decades brain optical imaging methods have yielded a number of revolutionary results when applied to the functional mapping of the cerebral cortex. The purpose of this review is to analyze research capabilities and limitations of the different optical imaging techniques based on the visualization of oxygenation and deoxygenation processes in the brain tissue, and the main capabilities and findings provided by these methods in experimental neuroscience. Starting with the general introduction of brain tissue physiology, we will describe the intrinsic optical imaging technique and several other optical oxygen imaging methods introduced during the last years, and then focusing on the phosphorescence quenching methods. So far, these methods, which operate in the different experimental settings and perform different analytical tasks, have been validated in the experiments with model animals, and some of them have potential for use under clinical settings with human patients.