Fractional Poincaré inequalities for general measures (original) (raw)
Abstract
AI
This paper establishes fractional Poincaré inequalities for general measures on R^n, focusing on measures that can be expressed as M = e^{-V} for some sufficiently regular function V. It investigates the implications of nonlocal quantities and the conditions under which such inequalities hold, particularly under assumptions involving the behavior of the measure at infinity. The results contribute to the understanding of Sobolev spaces and the interplay between the measure and the Poincaré inequality.
Figures (1)
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (21)
- R.A. Adams and J.J.F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Am- sterdam, second edition, 2003.
- AHL + 02] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and P. Tchamitchian. The solution of the Kato square root problem for second order elliptic operators on R n . Ann. of Math. (2), 156(2):633-654, 2002.
- P. Auscher, A. McIntosh, and E. Russ. Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal., 18(1):192-248, 2008.
- P. Auscher. On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related esti- mates, volume 186 of Mem. Amer. Math. Soc. Amer. Math. Soc., 2007.
- Dominique Bakry, Franck Barthe, Patrick Cattiaux, and Arnaud Guillin. A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab., 13:60-66, 2008.
- D. Bakry and M. Émery. Propaganda for Γ 2 . In From local times to global geometry, control and physics (Coventry, 1984/85), volume 150 of Pitman Res. Notes Math. Ser., pages 39-46. Longman Sci. Tech., Harlow, 1986.
- D. Chafaı. Entropies, convexity, and functional inequalities: on Φ- entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ., 44(2):325- 363, 2004.
- T. Coulhon, E. Russ, and V. Tardivel-Nachef. Sobolev algebras on Lie groups and Riemannian manifolds. Amer. J. Math., 123:283-342, 2001.
- E.B. Davies. One-parameter semigroups, volume 15 of London Mathe- matical Society Monographs. Academic Press, Inc., London-New York, second edition, 1980.
- Jean-Dominique Deuschel and Daniel W. Stroock. Hypercontractivity and spectral gap of symmetric diffusions with applications to the sto- chastic Ising models. J. Funct. Anal., 92(1):30-48, 1990.
- M.P. Gaffney. The conservation property of the heat equation on Rie- mannian manifolds. Comm. Pure Appl. Math., 12:1-11, 1959.
- I. Gentil and C. Imbert. The Lévy-Fokker-Planck equation: Φ-entropies and convergence to equilibrium. Asymptot. Anal., 59(3):125-138, 2008.
- D. Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, second edition, 1981.
- M. Kanai. Rough isometries and combinatorial approximations of ge- ometries of noncompact riemannian manifolds. J. Math. Soc. Japan, 37:391-413, 1985.
- N. S. Landkof. Foundations of modern potential theory. Springer-Verlag, New York, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.
- M. Ledoux. The concentration of measure phenomenon. Amer. Math. Soc., 2001.
- E.M. Stein. The characterization of functions arising as potentials I. Bull. Amer. Math. Soc., 67:102-104, 1961.
- R.S. Strichartz. Multipliers on fractional Sobolev spaces. J. Math. Mech., 16:1031-1060, 1967.
- C. Villani. HypocoercivityI. To appear in Memoirs of the AMS, 2009.
- L. Wu. A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields, 118(3):427-438, 2000.
- Clément Mouhot-University of Cambridge, DAMTP Wilberforce road, Cambridge CB3 0WA, England On leave from: CNRS & École Normale Supérieure, DMA, 45, rue d'Ulm -F 75230 Paris cedex 05, France Emmanuel Russ-Université Aix-Marseille III, LATP, Faculté des Sciences et Techniques, Case cour A Avenue Escadrille Normandie-Niemen, F-13397 Marseille, Cedex 20, France et CNRS, LATP, CMI, 39 rueF. Joliot-Curie, F-13453 Marseille Cedex 13, France Yannick Sire-Université Aix-Marseille III, LATP, Faculté des Sciences et Techniques, Case cour A Avenue Escadrille Normandie-Niemen, F-13397 Marseille, Cedex 20, France et CNRS, LATP, CMI, 39 rueF. Joliot-Curie, F-13453 Marseille Cedex 13, France