The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages (original) (raw)

Tertiary Endosymbiosis in Two Dinotoms Has Generated Little Change in the Mitochondrial Genomes of Their Dinoflagellate Hosts and Diatom Endosymbionts

PLoS ONE, 2012

Background: Mitochondria or mitochondrion-derived organelles are found in all eukaryotes with the exception of secondary or tertiary plastid endosymbionts. In these highly reduced systems, the mitochondrion has been lost in all cases except the diatom endosymbionts found in a small group of dinoflagellates, called 'dinotoms', the only cells with two evolutionarily distinct mitochondria. To investigate the persistence of this redundancy and its consequences on the content and structure of the endosymbiont and host mitochondrial genomes, we report the sequences of these genomes from two dinotoms.

Peculiarities within peculiarities – dinoflagellates and their mitochondrial genomes

Mitochondrial DNA Part B, 2017

After the establishment of an endosymbiotic relationship between a proto-mitochondrion and its probable archaeal host, mitochondrial genomes underwent a spectacular reductive evolution. An interesting pathway was chosen by mitogenomes of unicellular protists called dinoflagellates, which experienced an additional wave of reduction followed by amplification and rearrangement leading to their secondary complexity. The former resulted in a mitogenome consisting of only three protein-coding genes, the latter in their multiple copies being scattered across numerous chromosomes and the evolution of complex processes for their expression. These stunning features raise a question about the future of the dinoflagellate mitochondrial genome.

Mitochondrial Genome of a Tertiary Endosymbiont Retains Genes for Electron Transport Proteins

The Journal of Eukaryotic Microbiology, 2007

Mitochondria and plastids originated through endosymbiosis, and subsequently became reduced and integrated with the host in similar ways. Plastids spread between lineages through further secondary or even tertiary endosymbioses, but mitochondria appear to have originated once and have not spread between lineages. Mitochondria are also generally lost in secondary and tertiary endosymbionts, with the single exception of the diatom tertiary endosymbiont of dinoflagellates like Kryptoperidinium foliaceum, where both host and endosymbiont are reported to contain mitochondria. Here we describe the first mitochondrial genes from this system: cytochrome c oxidase 1 (cox1), cytochrome oxidase 3 (cox3), and cytochrome b (cob). Phylogenetic analyses demonstrated that all characterized genes were derived from the pennate diatom endosymbiont, and not the host. We also demonstrated that all three genes are expressed, that cox1 contains spliced group II introns, and that cob and cox3 form an operon, all like their diatom relatives. The endosymbiont mitochondria not only retain a genome, but also express their genes, and are therefore likely involved in electron transport. Ultrastructural examination confirmed the endosymbiont mitochondria retain normal tubular cristae. Overall, these data suggest the endosymbiont mitochondria have not reduced at the genomic or functional level.

The Highly Reduced and Fragmented Mitochondrial Genome of the Early-branching DinoflagellateOxyrrhis marina Shares Characteristics with both Apicomplexan and Dinoflagellate Mitochondrial Genomes

The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis marina.We show that Oxyrrhis is a basal member of the dinoflagellate lineage whose mitochondrial genome has some unique characteristics while sharing others with apicomplexans or dinoflagellates. Specifically, Oxyrrhis has the smallest gene complement known, with several rRNA fragments and only two protein coding genes, cox1 and a cob-cox3 fusion. The genome appears to be highly fragmented, like that of dinoflagellates, but genes are frequently arranged as tandem copies, reminiscent of the repeating nature of the Plasmodium genome. In dinoflagellates and Oxyrrhis, genes are found in many arrangements, but the Oxyrrhis genome appears to be more structured, since neighbouring genes or gene fragments are invariably the same: cox1 and the cob-cox3 fusion were never found on the same genomic fragment. Analysing hundreds of cDNAs for both genes and circularized mRNAs from cob-cox3 showed that neither uses canonical start or stop codons, although a UAA terminator is created in the cob-cox3 fusion mRNA by post-transcriptional oligoadenylation. mRNAs from both genes also use a novel 5' oligo(U) cap. Extensive RNA editing is characteristic of dinoflagellates, but we find no editing in Oxyrrhis. Overall, the combination of characteristics found in the Oxyrrhis genome allows us to plot the sequence of many events that led to the extreme organisation of apicomplexan and dinoflalgellate mitochondrial genomes.

The Mitochondrial Genome and Transcriptome of the Basal Dinoflagellate Hematodinium sp.: Character Evolution within the Highly Derived Mitochondrial Genomes of Dinoflagellates

Genome Biology and Evolution, 2012

The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA.

Widespread and Extensive Editing of Mitochondrial mRNAS in Dinoflagellates

Journal of Molecular Biology, 2002

We report evidence of extensive substitutional editing of mitochondrial mRNAs in the dinoflagellate species Pfiesteria piscicida, Prorocentrum minimum and Crypthecodinium cohnii, based on a comparison of genomic and corresponding cDNA sequences determined for two mitochondrial DNA-encoded genes, cox1 (cytochrome oxidase subunit 1) and cob (apocytochrome b ). In the cox1 mRNA, we identify 72 substitutions at 40 sites in 39 codons, whereas in cob mRNA, we infer 86 editing events at 51 sites in 48 codons. Editing, which takes place in distinct clusters, changes , 2% of the total sequence, occurs predominantly at first and second positions of codons, and involves mostly (but not exclusively) A ! G (47%), U ! C (23%) and C ! U (17%) substitutions. In all but four of the 158 cases, editing changes the identity of the specified amino acid. At 21 (cox1 ) and 26 (cob ) sites, the same nucleotide change is observed at the same position in at least two of the species investigated. At about onethird of the sites, editing results in an amino acid change that increases similarity between the dinoflagellate Cox1 and Cob sequences and their homologs in other organisms; presumably editing at these sites is of particular functional significance. Overall, about half of the editing events either maintain or increase similarity between the dinoflagellate protein sequences and their non-dinoflagellate homologs, while a further onethird of the alterations are "dinoflagellate-specific" (i.e. they involve a change to an amino acid residue selectively conserved in at least two of the dinoflagellate species at a given position). The nature, pattern and phylogenetic distribution of the inferred edits implies either that more than one type of previously described editing process operates on a given transcript in dinoflagellate mitochondria, or that a mechanistically unique type of mitochondrial mRNA editing has evolved within the dinoflagellate lineage.

Algae or Protozoa: Phylogenetic Position of Euglenophytes and Dinoflagellates as Inferred from Mitochondrial Sequences

Journal of Molecular Evolution, 1997

The chloroplasts of euglenophytes and dinoflagellates have been suggested to be the vestiges of endosymbiotic algae acquired during the process of evolution. However, the evolutionary positions of these organisms are still inconclusive, and they have been tentatively classified as both algae and protozoa. A representative gene of the mitochondrial genome, cytochrome oxidase subunit I (coxI), was chosen and sequenced to clarify the phylogenetic positions of four dinoflagellates, two euglenophytes and one apicomplexan protist. This is the first report of mitochondrial DNA sequences for dinoflagellates and euglenophytes. Our COXI tree shows clearly that dinoflagellates are closely linked to apicomplexan parasites but not with algae. Euglenophytes and algae appear to be only remotely related, with euglenophytes sharing a possible evolutionary link with kinetoplastids. The COXI tree is in general agreement with the tree based on the nuclear encoded small subunit of ribosomal RNA (SSU rRNA) genes, but conflicts with that based on plastid genes. These results support the interpretation that chloroplasts present in euglenophytes and dinoflagellates were captured from algae through endosymbioses, while their mitochondria were inherited from the host cell. We suggest that dinoflagellates and euglenophytes were originally heterotrophic protists and that their chloroplasts are remnants of endosymbiotic algae.

Mitochondrial cob and cox1 Genes and Editing of the Corresponding mRNAs in Dinophysis acuminata from Narragansett Bay, with Special Reference to the Phylogenetic Position of the Genus Dinophysis

Applied and Environmental Microbiology, 2008

Dinophysis acuminata cells were isolated from Narragansett Bay water samples in June 2005 using flow cytometry. Dinoflagellate-specific PCR primers were used to isolate small-subunit rRNA (18S rRNA), mitochondrial cytochrome b (cob), and cytochrome c oxidase I (cox1) genes and the encoded cDNAs. Maximumlikelihood analysis of a concatenated data set of ribosomal DNA and cDNA sequences of cob and cox1 showed that D. acuminata was sister to Gonyaulacoids, but without strong bootstrap support. The approximately unbiased test could not reject alternative positions of D. acuminata. To gain better resolution, mRNA editing of cob and cox1 was inferred for D. acuminata and 13 other dinoflagellate species. The location and type of editing as well as the distribution pattern in D. acuminata were generally similar to those in other dinoflagellates except for two edited sites that are unique to this species. Bayesian analyses of a matrix that recorded the location and type of editing, and of a matrix that included the protein sequences of COB and COX1 with the editing data yielded tree topologies similar to the three-gene tree but again failed to resolve the phylogenetic position of D. acuminata. However, the density of edited sites in the D. acuminata mitochondrial genes, consistent with phylogenetic trees, indicated that Dinophysis is a derived dinoflagellate lineage, diverging after other lineages such as Oxyrrhis, Amphidinium, and Symbiodinium. We demonstrate that dinoflagellate-specific PCR coupled with flow cytometry can be a useful tool to analyze genes and their transcripts from a natural dinoflagellate population.

An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome

Science Advances

Dinoflagellates are microbial eukaryotes that have exceptionally large nuclear genomes; however, their organelle genomes are small and fragmented and contain fewer genes than those of other eukaryotes. The genus Amoebophrya (Syndiniales) comprises endoparasites with high genetic diversity that can infect other dinoflagellates, such as those forming harmful algal blooms (e.g., Alexandrium). We sequenced the genome (~100 Mb) of Amoebophrya ceratii to investigate the early evolution of genomic characters in dinoflagellates. The A. ceratii genome encodes almost all essential biosynthetic pathways for self-sustaining cellular metabolism, suggesting a limited dependency on its host. Although dinoflagellates are thought to have descended from a photosynthetic ancestor, A. ceratii appears to have completely lost its plastid and nearly all genes of plastid origin. Functional mitochondria persist in all life stages of A. ceratii, but we found no evidence for the presence of a mitochondrial ge...

Alveolate Mitochondrial Metabolic Evolution: Dinoflagellates Force Reassessment of the Role of Parasitism as a Driver of Change in Apicomplexans

Molecular Biology and Evolution, 2013

Mitochondrial metabolism is central to the supply of ATP and numerous essential metabolites in most eukaryotic cells. Across eukaryotic diversity, however, there is evidence of much adaptation of the function of this organelle according to specific metabolic requirements and/or demands imposed by different environmental niches. This includes substantial loss or retailoring of mitochondrial function in many parasitic groups that occupy potentially nutrient-rich environments in their metazoan hosts. Infrakingdom Alveolata comprises a well-supported alliance of three disparate eukaryotic phyla-dinoflagellates, apicomplexans, and ciliates. These major taxa represent diverse lifestyles of free-living phototrophs, parasites, and predators and offer fertile territory for exploring character evolution in mitochondria. The mitochondria of apicomplexan parasites provide much evidence of loss or change of function from analysis of mitochondrial protein genes. Much less, however, is known of mitochondrial function in their closest relatives, the dinoflagellate algae. In this study, we have developed new models of mitochondrial metabolism in dinoflagellates based on gene predictions and stable isotope labeling experiments. These data show that many changes in mitochondrial gene content previously only known from apicomplexans are found in dinoflagellates also. For example, loss of the pyruvate dehydrogenase complex and changes in tricarboxylic acid (TCA) cycle enzyme complement are shared by both groups and, therefore, represent ancestral character states. Significantly, we show that these changes do not result in loss of typical TCA cycle activity fueled by pyruvate. Thus, dinoflagellate data show that many changes in alveolate mitochondrial metabolism are independent of the major lifestyle changes seen in these lineages and provide a revised view of mitochondria character evolution during evolution of parasitism in apicomplexans.