Current Ideas about Prebiological Compartmentalization (original) (raw)

Contemporary biological cells are highly sophisticated dynamic compartment systems which separate an internal volume from the external medium through a boundary, which controls, in complex ways, the exchange of matter and energy between the cell's interior and the environment. Since such compartmentalization is a fundamental principle of all forms of life, scenarios have been elaborated about the emergence of prebiological compartments on early Earth, in particular about their likely structural characteristics and dynamic features. Chemical systems that consist of potentially prebiological compartments and chemical reaction networks have been designed to model pre-cellular systems. These systems are often referred to as " protocells ". Past and current protocell model systems are presented and compared. Since the prebiotic formation of cell-like compartments is directly linked to the prebiotic availability of compartment building blocks, a few aspects on the likely chemical inventory on the early Earth are also summarized.

On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells

Philosophical Transactions of the Royal Society B: Biological Sciences, 2003

All life is organized as cells. Physical compartmentation from the environment and self–organization of self–contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide–rich hydrothermal fluid and iron(II)–containing waters of the Hadean ocean floor. The naturally arising, three–dimensional compartmentation observed within fossilized seepage–site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free–living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl–methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre–biotic syntheses occurred at the in...

Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective

Life

Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.