From "Animal" Electricity to "Metallic" Electricity and the Beginning of Electrochemistry: The Didactical View (original) (raw)

2012, Proceedings of the 22nd International Conference on Chemistry Education and 11th European Conference on Research in Chemical Education, ICCE-ECRICE, 2012, Rome, Italy, pp. 237-240

Sign up for access to the world's latest research

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Abstract

From high school to University, students have always faced problems understanding the functioning of an electrochemical cell. In this article we will show that many of these encountered difficulties have been identified by scientists during the development of electrochemistry. Therefore, we will demonstrate how Volta, who rejected the idea of "animal" electricity as was illustrated by Galvani, postulated the existence of "metallic" electricity. Meanwhile, there was the emergence of a new theory, among others, initiated, by Faraday: The electrochemistry. Its development raised several controversial discussions among researchers and several conceptual difficulties will have been overcome as well.

Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani

Brain Research Bulletin, 1998

Preceded by a companion paper on Galvani's life, this article is written on the occasion of the bicentenary of the death of Luigi Galvani. From his studies on the effects of electricity on frogs, the scientist of Bologna derived the hypothesis that animal tissues are endowed with an intrinsic electricity that is involved in fundamental physiological processes such as nerve conduction and muscle contraction. Galvani's work swept away from life sciences mysterious fluids and elusive entities like "animal spirits" and led to the foundation of a new science, electrophysiology. Two centuries of research work have demonstrated how insightful was Galvani's conception of animal electricity. Nevertheless, the scholar of Bologna is still largely misrepresented in the history of science, because the importance of his researches seems to be limited to the fact that they opened the paths to the studies of the physicist Alessandro Volta, which culminated in 1800 with the invention of the electric battery. Volta strongly opposed Galvani's theories on animal electricity. The matter of the scientific controversy between Galvani and Volta is examined here in the light of two centuries of electrophysiological studies leading to the modern understanding of electrical excitability in nerve and muscle. By surveying the work of scientists such as Nobili, Matteucci, du Bois-Reymond, von Helmholtz, Bernstein, Hermann, Lucas, Adrian, Hodgkin, Huxley, and Katz, the real matter of the debate raised by Galvani's discoveries is here reconsidered. In addition, a revolutionary phase of the 18th century science that opened the way for the development of modern neurosciences is reevaluated.

Luigi Galvani and the Debate on Animal Electricity

Difficulties in learning Ohm’s Law suggest a need to refocus it from the law for a part of the circuit to the law for the whole circuit. Such a revision may improve understanding of Ohm’s Law and its practical applications. This suggestion comes from an analysis of the history of the law’s discovery and its teaching. The historical materials this paper provides can also help teacher to improve students’ insights into the nature of science.

Visionary figures in the field of electrochemistry who revolutionized voltammetry

Macedonian Journal of Chemistry and Chemical Engineering, 2024

Understanding energetics and electron behavior has been pivotal in elucidating numerous fundamental phenomena, including electricity, corrosion, respiration, energy generation in biological systems, intermolecular interactions within living organisms, organic synthesis, drug development, enzyme functions, and the design of biosensors, among others. As 2024 records the centennial anniversary of the completion of the first polarograph by Nobel laureate Jaroslav Heyrovský (awarded the Nobel Prize in Chemistry in 1959), it presents an opportune moment to pay tribute to several eminent electrochemists who have made significant contributions to the field of voltammetric techniques. Following our recent acknowledgment of the outstanding women who have made substantial contributions to voltammetry in a prior publication, this article aims to briefly highlight the major achievements of several distinguished male figures in the field (

Luigi Galvani's path to animal electricity

Comptes Rendus Biologies, 2006

In spite of the historical importance of the research that, in the second half of the 18th century, led Luigi Galvani (1737Galvani ( -1798 to lay down the foundation of modern electrophysiology, his scientific personality is largely misrepresented in science history and in popular imagery. He is still considered as a pioneer that by chance incurred some surprising experimental observations and was incapable of pursuing his research in a coherent way. In contrast with these views, Galvani was a high-standard scientist who succeeded, with the strength of experimental science, in demonstrating, in animals, electricity in a condition of disequilibrium between the interior and the exterior of excitable fibres. This electricity, called 'animal electricity', was deemed responsible for nerve conduction. By studying the scientific endeavours of Galvani, through his published and unpublished material, and by situating them in the historical context of the physiology of the Enlightenment, this paper attempts to trace the elusive and complex path that led Galvani to his extraordinary discovery.

Luigi Galvani and the debate on animal electricity, 1791–1800

Annals of Science, 1987

Galvani's discovery provoked an animated debate that lasted for about a decade. So far, historians have studied only the controversy between Volta and Galvani. I show that a more extensive examination of the response to Galvani's treatise reveals a number of important issues that were characteristic of contemporary physics and physiology but have not much attracted the attention of historians. In particular, the analysis shows the need to reappraise Galvani's role in establishing animal electricity.

Luigi Galvani and the foundations of electrophysiology

Resuscitation, 2009

Luigi Galvani became one of the greatest scientists of the 18th century with his research and the development of his theory on animal electricity. His work was appreciated by many scientists. Nevertheless, it gave rise to one of the most passionate scientific debates in history when Alessandro Volta postulated that Galvani had confused intrinsic animal electricity with small currents produced by metals. This debate would result in the creation of electrophysiology, electromagnetism, electrochemistry and the electrical battery. Galvani responded to each of the postulated theories of Volta giving irrefutable proof of the involvement of electricity in the contraction of muscles. However, his work was subsequently abandoned and silenced for many years but his ideas and theories were finally confirmed by the creation of new instruments and the interest of new scientists who helped position Galvani as the father of electrophysiology.

Introduction to electrochemistry

1993

Chapter 2 Theory of electrolytes 11 2.1 Introduction 11 2.2 The structure of water 11 PANEL 2: Polywater: The water that never was 13 2.3 Electrolyte solutions 15 2.4 Interactions in an electrolyte 19 2.5 Activities of ions 19 2.6 Debye-Hiickel limiting law 22 2.7 Solid electrolytes 32 2.8 Problems 34 2.9 Answers 35 Chapter 3 The electrified interface 38 3.1 Introduction 38 3.2 An electrode as giant ion 38 PANEL 3: Electric fish 39 3.3 The structure of the double layer 40 vii viii Contents 3.4 What can be measured at a double layer 41 3.5 Theories of the double layer 44 3.6 Electrochemical potentials 50 3.7 Electrokinetic effects 3.8 Problems 56 3.9 Answers 57 Chapter 4 Electrodes and electrochemical cells 59 4.1 Introduction 59 4.2 Definitions 61 4.3 Electrode potential 63 4.4 Writing electrochemical cells and potentials 69 4.5 Types of electrodes 70 4.6 Electrode potentials and activities 73 4.7 Concentration cells and membrane equilibria 75 PANEL 4: Prehistoric battery 4.8 Thermodynamics of cells 4.9 Some applications of equilibrium electrochemical cells 81 4.10 Problems 4.11 Answers Chapter 5 Ion transport, diffusion and hydrodynamics 5.1 Introduction 5.2 Forces and movement PANEL 5: Electrodeposited fractals 5.3 Fick's Laws of Diffusion 5.4 Conductivity of electrolytes 5.5 Theories of the conductivity of electrolytes 5.6 More about ion transport 5.7 Mobility and diffusion 5.8 Hydrodynamics 5.9 Problems 5.10 Answers 118 Chapter 6 Electrochemical kinetics 6.1 Introduction 6.2 Faraday's Laws 122 6.3 The course of an electrochemical reaction 122 6.4 The Butler-Volmer equation 124 Contents ix 6.5 Other sources of overpotential 6.6 Multistep reactions 6.7 More about electrode kinetics 6.8 Photoelectrochemistry 6.9 Problems 6.10 Answers Chapter 7 Techniques of electrochemistry 7.1 Introduction 7.2 Electrochemical cells 7.3 Electronics 7.4 Techniques 7.5 Spectroelectrochemistry 7.6 Problems 7.7 Answers Chapter 8 Mechanisms of electrochemical reactions 8.1 Introduction 8.2 Deposition of copper PANEL 8: Electrochemistry in crime 8.3 Hydrogen electrode reaction 8.4 Oxygen electrode reaction 8.5 The reduction of azobenzene 8.6 Techniques for determining mechanism 8.7 Problems 8.8 Answers Chapter 9 Electroanalytical chemistry: potentiometric methods 190 9.1 Introduction 190 9.2 Potentiometric methods of analysis 191 9.3 Conductiometric analysis 9.4 Problems 9.5 Answers 215 Chapter 10 Electroanalytical chemistry: voltammetry and coulometry 221 10.1 Introduction 10.2 Polarography PANEL 10: Electrochemistry in the dentist's chair x Contents 10.3 Voltammetry 237 10.4 Amperometric titrations 243 10.5 Coulometry and electro gravimetry 10.6 Problems 10.7 Answers Chapter 11 Electrochemical synthesis 11.1 Introduction PANEL 11: Victor Frankenstein: An early bioelectrochemist 255 11.2 Experimental methods 11.3 Mechanistic aspects 11.4 Types of electrosynthetic reaction 261 11.5 Examples of organic electrochemical synthesis 266 11.6 Examples of inorganic electrochemical synthesis 270 11.7 Problems 271 11.8 Answers Chapter 12 Industrial electrochemistry 12.1 Introduction 274 12.2 Electrochemical engineering PANEL 12: The story of electrolysis 12.3 The chi or-alkali industry 12.4 Metal winning, refining and finishing 12.5 Electrolysis of water 12.6 Electrochemical preparation of organic compounds 12.7 Problems 12.8 Answers Chapter 13 Batteries and fuel cells 13.1 Introduction 13.2 Definitions 13.3 Energetics of batteries PANEL 13: Battery research in the 1830s: J. F. Daniell (1791-1845) 13.4 Economics of batteries 13.5 Battery design 13.6 Types of battery 13.7 Fuel cells 13.8 Problems 13.9 Answers electrochemistry is not such an alien being but a subject that fits neatly into science. 1.2 History 7.2. 7 From then to now The history of electrochemistry is a remarkably short one for a subject that is steeped in archaic terms and that has a curiously dusty feel about it. Leaving aside the possibility that visiting space folk may have left flashlight batteries or the discoveries of Babylonian cells (see panel on electrochemical archaeology), electrochemistry is 200 years old (1791-1991). As with many who make the very first discovery of something, Luigi Galvani got the explanation wrong of why his frogs' legs twitched when sparks were generated from an electric machine. Luckily Volta quickly came to the rescue (see panel on electrolysis), but it was about 50 years before Michael Faraday made his famous remark about 'what use is a newborn baby?' to the reasonable request as to what one could do with this new electricity. Volta in 1800 made the first battery, which became known as a Voltaic pile, but at the time Volta wrote: 'To this apparatus, much more similar to the natural electric organ of the torpedo or the electric eel, etc., than to the Leyden flask, I would wish to give the name "Artificial Electric Organ"'. Electrochemists breathe a sigh of relief that we still are not delving into the mysteries of 'artificial electric organs'! Faraday's laws came in 1834, and in the same year Sir William Grove Cold fusion: or illusion? On 23 March 1989 an astounded world heard claims by Fleischmann and Pons that they had caused nuclei to fuse in a test-tube. Were they right? Three years later and, alas, the subject is as murky as it was then. Back in 1989 we saw an unusual phenomenon. Not cold fusion, but the dissemination of scientific results by television, newspapers and electronic bulletin boards. No peer-reviewed papers and very few hard facts led to enormous speculation. Anyone who had the remotest theory or opinion could appear on a chat show. The dream of the free lunch had almost come true. What did Fleischmann and Pons claim? They said that when hydrogen is evolved at a palladium electrode from a solution of LiOD in D20, the deuterium atoms that penetrate the lattice undergo nuclear fusion.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (822)

  1. References
  2. S. Erduran, M.P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research, Springer Academic Publishers, Dordrecht, 2008.
  3. L. Bricker, P. Bell, Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education, Sci Ed, 2009, 92, pp. 473-498.
  4. V. Sampson, D. Clark, Assesment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions, Sci Ed, 2008, 92, pp. 447-472.
  5. I. Dussel, Aprender y enseñar en la cultura digital, Fundación Santillana, Buenos Aires, 2011.
  6. D. Kuhn, Teaching and learning science as an argument, Sci Ed, 2010, 94, pp. 810-824.
  7. F. Van Eemeren, R. Grootendorst, F. Snoeck, Argumentación: Análisis, evaluación, presentación, Biblos, Buenos Aires, 2006.
  8. S. Toulmin, The uses of argument, Cambridge University Press, Cambridge, 1958.
  9. N. Ospina, L. Galagovsky, G. Merino, I Congreso Latinoamericano de Investigación en Didáctica de las Ciencias Experimentales, Santiago de Chile, July 2012, n/pp.
  10. Y. Ariza, A., Adúriz-Bravo, La nueva filosofía de la ciencia y la concepción semántica de las científicas en la didáctica de las ciencias naturales, Ed en Cienc Mat y Exp, 2012, 2, pp 55-66.
  11. J.A. Díez, P. Lorenzano, Desarrollos actuales de la metateoría estructuralista: Problemas y discusiones, Universidad Nacional de Quilmes, Bernal, 2002.
  12. J.A. Díez, C.U. Moulines, Fundamentos de filosofía de la ciencia, Ariel, Barcelona, 1999.
  13. A. Chakravartty, The semantic or model-theoretic view of theories and scientific realism, Synthese, 2001, 127, pp. 325-345.
  14. M. Develaki. The model-based view of scientific theories and the structuring of school science programmes, Sci & Ed, 2007, 16, pp. 725-749.
  15. A. Adúriz-Bravo, A 'semantic' view of scientific models for science education, Sci Ed, in press.
  16. A. Adúriz-Bravo, Integración de la epistemología en la formación del profesorado de ciencias, Universitat Autònoma de Barcelona, Bellaterra, 2001.
  17. R. Giere, Explaining science: A cognitive approach, University of Chicago Press, Chicago, 1988.
  18. C.A. Sandoval, Investigación cualitativa, ICFES, Bogotá, 2002.
  19. OECD-PISA Main Results (URL: hhttp://www.oecd.org/pages/0,3417,en\_32252351\_32236130\_1\_1\_1\_1\_1,00.html, online 10.09.2012).
  20. MPI (2007). Il nuovo obbligo di istruzione: cosa cambia nella scuola? Firenze, Italia: ANSAS Grafiche Gelli -(URL: http://www.invalsi.it/invalsi/rn/odis/doc/Obbligo\_I\_Parte.pdf, online10.09.2012).
  21. MPI (2010). Linee guida per il passaggio a nuovo ordinamento. Istituti Tecnici. In D.P.R. 15 marzo 2010, articolo 8, comma 3 (p. 55-56; 84-85). (URL: http://www.indire.it/lucabas/lkmw\_file/nuovi\_tecnici///\_LINEE\_GUIDA\_TEC\_.pdf, online 10.09.2012).
  22. KMK (2004). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. Beschluss vom 16.12.2004. München: Luchterhand.
  23. KMK (2010). Naturwissenschaften, Biologie, Chemie, Physik. Entwurf Verbändebeteiligung:16.12.2010. (URL: http://www.standardsicherung.schulministerium.nrw.de/lehrplaene/upload/klp\_SI/nw/GE\_NW\_Bio\_Che\_Phy\_2010-12- 16_Verbändebeteiligung.pdf, online 10.09.2012).
  24. Weinert, E. F. (2001). Vergleichende Leistungsmessung in Schulen -eine umstrittene Selbstverständlichkeit. In F. E. Weinert, Leistungsmessungen in Schulen (p. 17-31). Weinheim und Basel: Beltz Verlag
  25. EU (2006). Recommendation of the European Parliament and of the Council on the establishment of the European Qualifications Framework for lifelong learning. (URL: http://ec.europa.eu/education/policies/educ/eqf/com\_2006\_0479\_en.pdf, online 10.09.2012).
  26. R. C. Suart, M. E. R. Marcondes, Ciências e Cognição, 2009, 14, 50.
  27. S. E. Toulmin, The uses of argument, Cambridge University Press, Cambridge, 1958.
  28. L. H. Sasseron, A. M. P. Carvalho, Ciência & Educação, 2011, 17, 97.
  29. R. Drive, P. Newton, J. Osborne, Science Education, 2000, 84, 287.
  30. S. Erduran, S. Simon, J. Osborne, Science Education, 2004, 88, 915.
  31. M. P. Jiménez-Alexandre, A. Bugallo Rodriguez, R. A. Duschil, Science Education, 2000, 84, 757.
  32. A. M. P. Carvalho, E. I. Santos, M. C. P. S. Azevedo, M. P. S. Date, S. R. S. Fujii, V. B. Nascimento, Termodinâmica: Um ensino por investigação, Universidade de São Paulo, São Paulo, 1999. Reference list
  33. S. Hawking, The Theory of Everything, New Millennium Press, London, 2002
  34. J. Maddox, What Remains to be Discovered, Macmillan Publishers Ltd, London, 1998
  35. T. Siegfried, Science, 2005, 309, 76
  36. R. Stannard, The End of Discovery, Oxford University Press, Oxford, 2010
  37. M. Shermer, Nature, 2012, 484, 446
  38. R.P. Feynman, The Physics Teacher, 1969, 7, 313
  39. A. Szent-Gyorgyi, as cited in The Scientist Speculates, I. J. Good (ed.), Heineman, London, 1962
  40. M. Buber, Storie e leggende chassidiche, Mondadori, 2008
  41. SIPRI Yearbook 2012, Oxford University Press, Oxford, 2012
  42. J.E. Stiglitz, L.J. Bilmes, The Three Trillion Dollar War, Norton, New York, 2008
  43. V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Acc. Chem. Res., 1998, 31, 26
  44. M.J. Rees, Our Final Hour, Basic Books, New York, 2003
  45. S. Greenfield, Tomorrow's People, Pinguin Books, 2003
  46. B. McKibben, Enough, Henry Holt, New York, 2003
  47. N. Armaroli, V. Balzani, Energy for a Sustainable World, Wiley-VCH, 2011
  48. T. Prince, The Logic of Sufficiency, MIT Press, Cambridge (MA), 2005
  49. S.J. Gould, Science, 1998, 279, 812
  50. U. Galimberti, I miti del nostro tempo, Feltrinelli, Milano, 2009
  51. Editorial, Nature, 2012, 485, 5
  52. Chemistry World, 2012, 9 (5), 80
  53. A. Smith, C. Weiner, Robert Oppenheimer: letters and recollections, Stanford University Press, Stanford, 1995
  54. R.A. Muller, Physics for Future Presidents, Norton, New York, 2010
  55. H. Arendt, Crises of the Republic, Houghton Mifflin Harcourt, Boston, 1972
  56. R.G. Eggert, Nature Chemistry, 2011, 3, 688
  57. N. Armaroli, V. Balzani, Energia per l'Astronave Terra, Zanichelli, Bologna, 2011
  58. P. Crutzen, Nature, 2002, 415, 23
  59. A Lovins, Reinventing Fire, Chelsea Green Publishing Company, USA
  60. E. Davis, Chemistry World, 2011, January, 50
  61. J.B. Moody, B. Nogrady, The Sixth Wave, Random House, Sidney, 2010 Reference list
  62. Don Tapscott, Grown up digital, Mc Graw Hill, New York, 2009
  63. Badanie w ramach kampanii "Cała Polska czyta dzieciom" 2007 Gemius, (Dzieci aktywne online, http://emilek.pl/artykuly/raport\_gemius\_dzieci\_aktywne\_online.pdf.)
  64. Badanie Fundacji Dzieci Niczyje "Dzieci aktywne on-line" 2007
  65. M., Bartoszewicz, T., Pietrala, Scenariusze zajęć pozalekcyjnych z zakresu przyrody i chemii, Poznań 2011 http://ifa.amu.edu.pl/e-nauczyciel/
  66. I. BeckQuestioning the Author: an approach for enhancing student engagement with text. Newark, DE: 1997 International Reading Association.
  67. I. Beck, M. McKeown, C. Sandora, L. Kucan, & J. Worthy, (1996). Questioning the Author: A Yearlong Classroom Implementation to Engage Students with Text. The Elementary School Journal, 96(4), 385-414
  68. H. Gulińska, M. Bartoszewicz Scenariusze jednostek e-learningowych z chemii, Warszawa 2011 Projekt e-Akademia Przyszłości www.e-akademia.eduportal.pl
  69. E. Grela,E., M. Plebańska, Wyniki pracy na platformie e-learningowej w roku szkolnym 2010-2012 Warszawa WSiP.
  70. H. Gulińska, M. Bartoszewicz, G. Makles, K. Mischke, Scenariusze zajęć wyprzedzających z chemii, Poznań 2011http://kolegiumsniadeckich.pl/
  71. WikiHyperGlossary development site, http://hyperglossary.org/ (last accessed September 2012).
  72. Hirsch, E.D., The Knowledge Deficit, Houghton Mifflin Harcourt, 2006, p.17.
  73. Interactive Learning Paradigms, http://www.ilpi.com/index.html (last accessed September 2012)
  74. MS-Demystifier, http://www.ilpi.com/msds/ref/demystify.html (last accessed September 2012)
  75. Toreki, R. & Belford, R., Improving Safety Comprehension Through Hypertext: The MSDS HyperGlossary, Spring 2006
  76. ConfChem, http://www.ilpi.com/msds/ref/confchem.html (last accessed August 2012).;
  77. Belford, R. &Killingsworth, C., Hyperglossary Generating Program with Wiki Content and Modifiable JavaScript Automated Search Functionality, Fall 2006 CCCE Newsletter, http://www.ualr.edu/rebelford/ccce/belford\_cccenl.htm (last accessed September 2012)
  78. E. Abrams, S. Southerland, P. Silva (eds.), Inquiry in the classroom. Realities and opportunities. Information Age Publishing, Inc., Charlotte 2008.
  79. V. Akerson, How do I do this? Skills students need for Inquiry. In: E. Abrams, S. Southerland, P. Silva. (eds.). Inquiry in the classroom. Realities and opportunities. Information Age Publishing, Inc., Charlotte (2008).
  80. R.E. Clark, Educational Technology Research and Development, 1994, 42, 21-29.
  81. J.M. Gößling, Autonomous discovering experimentation -Effects of strategy usage on learning outcomes (German title: Selbständig entdeckendes Experimentieren -Lernwirksamkeit der Strategieanwendung.) Dissertation, Duisburg-Essen University. http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-25874/Dissertation.pdf, 2011.
  82. R.F. Gunstone, A.B. Champagne, Promoting conceptual change in the laboratory. In E. Hegarty-Hazel (ed.): The Student Laboratory and the Science Curriculum, pp. 159-182, Routledge, London (1990).
  83. C. Hart, P. Mulhall, A. Berry, J. Loughran, R.F. Gunstone, Journal of Research in Science Teaching, 2000, 37, 7, 655-675.
  84. K.A. Heller & Ch. Perleth, Cognitive Abilities Test for Years 4-12, revised (German title: Kognitiver Fähigkeitstest für 4.- 12.
  85. Klassen, Revision (KFT 4-12+ R)). Hogrefe, Göttingen 2000.
  86. A. Hofstein, V.N. Lunetta, Review of Educational Research, 1982, 52, 201-217.
  87. D. Klahr, Exploring Science. The Cognition and Development of Discovery Processes. The MIT Press, Cambridge 2000.
  88. D. Klahr, K. Dunbar, Cognitive Science, 1988, 12, 1-55.
  89. J. Künsting, Influences on self-regulated learning. The role of subject-specific knowledge for helpful strategy usage, and a comparison of four kinds of learning goals in experiments. Dissertation, Duisburg-Essen University. VDM, Saarbrücken 2007.
  90. R. Lazarowitz, P. Tamir, Research on using laboratory instruction in science. In D. L. Gabel. (Ed.) Handbook of research on science teaching and learning, pp. 94-130. Macmillan, New York (1994).
  91. V.N. Lunetta, The school science laboratory: historical perspectives and centers for contemporary teaching. In P. Fensham (Ed.). Developments and dilemmas in science education, pp. 169-188, Falmer Press, London (1998).
  92. J. Marschner, Adaptive feedback for supporting self-regulated learning with experiments (German title: Adaptives Feedback zur Unterstützung des selbstregulierten Lernens durch Experimentieren). Dissertation, Duisburg-Essen University. http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-27679/Diss\_Marschner.pdf, 2011.
  93. S. Rumann, Collaborative learning in the chemistry classroom (German title: Kooperatives Lernen im Chemieunterricht). Dissertation, Duisburg-Essen University. Logos, Berlin 2005.
  94. Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (ed.). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. Luchterhand, Munich 2005.
  95. H. Thillmann, Self-regulated learning through experimentation: from logging to empowering. (German title: Selbstreguliertes Lernen durch Experimentieren: Von der Erfassung zur Förderung). Dissertation, Duisburg-Essen University. http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-18970/Dissertation\_Thillmann\_online-Version.pdf, 2007.
  96. L. Triona, D. Klahr, Cognition and Instruction 2003, 21, 149-173.
  97. J.E. Tschirgi, Child Development, 1980, 51, 1-10.
  98. W. Gräber & P. Nentwig: Scientific Literacy -Naturwissenschaftliche Grundbildung in der Diskussion [Scientific Literacy -Scientific Literacy in discussion]. In Gräber, Nentwig, Koballa & Evans (eds.) Scientific Literacy, pp. 7-20. Leske + Budrich, Oplaben, (2002)
  99. D. Klahr, Exploring Science. The Cognition and Development of Discovery Processes, MIT, Cambridge 2000
  100. A. Hofstein, Chem. Educ. Res. Pract., 2004, DOI: 10.1039/B4RP90027H
  101. J. Mayer: Erkenntnisgewinnung als wissenschaftliches Problemlösen [Scientific Inquiry as scientific problem solving]. In: Krüger, & Vogt (eds.) Theorien in der biologiedidaktischen Forschung, pp. 177-186. Springer, Berlin/Heidelberg (2007)
  102. T. Reyer, Oberflächenmerkmale in Unterricht. Exemplarische Analysen im Physikunterricht der gymnasialen Sekundarstufe [Surface features in teaching: exemplary analyses of physics lessons in upper secondary education], Logos-Verlag, Berlin 2004.
  103. M. Tesch & R. Duit: ZfDN, 2004, 10, 51-69
  104. T. Seidel, Lehr-Lernskripts im Unterricht. Freiräume und Einschränkungen für kognitive Lernprozesse -eine Videostudie im Physikunterricht [Teaching and learning scripts. Free spaces and restrictions for cognitive learning processes -a video study in physics education], Waxmann, Münster 2003
  105. C. Pauli & K. Reusser, UW, 2003, 31, 238-272
  106. G. Strobl: Naturwissenschaftliche Bildung -fachorientiert oder Fächer übergreifend [Scientific Literacy -subject-oriented or interdisciplinary]?. In: Ohly & Strobl (eds.) Naturwissenschaftliche Bildung, pp. 31-45. Beltz Verlag, Weinheim (2008)
  107. The Swedish National Agency for Education: Vad händer i NO-undervisningen [What happens in science education]?. http://na-serv.did.gu.se/amnesdid/pdf/kap1/CKBFrev.pdf. Accessed 20 August 2012
  108. T. Seidel, M. Prenzel, R. Duit & M. Lehrke (eds.) Technischer Bericht zur Videostudie "Lehr-Lern-Prozesse im Physikunterricht" [Technical report of the video study "teaching and learning processes in physics education"], IPN, Kiel 2003.
  109. J. Björkman & R. Tiemann, Jahrestagung der Gesellschaft für Didaktik der Chemie und Physik [Annual meeting of the "Gesellschaft für Didaktik der Chemie und Physik"], Oldenburg, September 2011, pp. 304-306
  110. I. Eilks, B. Ralle: Participatory Action Research in chemical education. In: B. Ralle, I. Eilks (eds.) Research in Chemical Education -What does this mean?, pp. 87-98, Shaker, Aachen, 2002.
  111. I. Eilks, S. Markic, T. Witteck: Collaborative innovation of the science classroom by Participatory Action Research -Theory and practice in a project of implementing cooperative learning methods in chemistry education. In: M. Valenčič Zuljan, J. Vogrinc (eds.) Facilitating effective student learning through teacher research and innovation, pp. 77-101, University of Ljubljana, Ljuljana, 2010.
  112. I. Eilks: Action Research in science education -From a general justification to a specific model in practice. In: F. Rauch, A. Schuster, A. Townsend, T. Stern (eds.) Bringing a different world into existence: action research as a trigger for innovations. Routledge, London, accepted for publication.
  113. M. Burmeister, F. Rauch, I. Eilks, Chem. Educ. Res. Pract., 2012, 13, 59.
  114. M. Summers, A. Childs, Res. Sci. Techn. Educ., 2007, 25, 307.
  115. W. Rieß, C. Mischo, Evaluationsbericht Bildung für nachhaltige Entwicklung (BNE) an weiterführenden Schulen in Baden- Württemberg, Umweltministerium, Stuttgart, 2008.
  116. H.-J. Seybold, W. Rieß, Environ. Educ. Res., 2006, 12 (1), 47.
  117. M. Burmeister, S. Jokmin, I. Eilks, Chem. Kon., 2011, 18, 123.
  118. M. Burmeister, I. Eilks, Chem. Educ. Res. Pract., 2012, 13, 93.
  119. M. Coffey, Green chemistry: Development of an educational board game. Paper presented at the Variety in Chemistry Education Conference, York, UK 2011.
  120. OECD: Organization for Economic Co-operation and Development, The PISA 2003 Assessment Framework - Mathematics, Reading, Science and Problem Solving Knowledge and Skills, OECD Publishing, Paris, 2003
  121. J. Cummins, Language, Power and Pedagogy. Bilingual Children in the Crossfire, Bilingual education and bilingualism, 23, Clevedon, 2010
  122. N. Mercer, C. Sams, Language and Education, 2006, 20/6, 507-528
  123. W. Grießhaber, (Fach-)Sprache im zweitsprachlichen Fachunterricht. In: Ahrenholz (eds.) Fachunterricht und Deutsch als Zweitsprache, Narr, Tübingen, 2010
  124. J. Leisen, Naturwissenschaften im Unterricht Physik 17, 2006, 95, 9-11
  125. I. Parchmann, L. Stäudel, Naturwissenschaften im Unterricht Chemie 19, 2008, 106/107, 4-9
  126. G. Vollmer, Sprache und Begriffsbildung im Chemieunterricht, Diesterweg, Frankfurt, 1980
  127. J. Wellington, J. Osborn, Language and literacy in science education, Open University Press, Buckingham, 2001
  128. M.A.K. Halliday, J.R. Martin, Writing Science: Literacy and discursive Power. University of Pittsburgh Press, Pittsburgh, 1993
  129. K. Rincke, Zeitschrift für Didaktik der Naturwissenschaften, 2006, 16, 235-260
  130. H.J. Schmidt, International Journal on Science Education, 1998, 13/4, 459-471
  131. H. Busch, B. Ralle, Special Language Competencies -Diagnosis and individual support. In: I. Eilks, B. Ralle (eds.), Issues of Heterogeneity and Cultural Diversity in Science Education and Science Education Research, Shaker Publishing, Aachen, 2012 (in press)
  132. I. Eilks, B. Ralle, Participatory Action Research in Chemical Education. In: B. Ralle & I. Eilks (Eds.): Research in Chemical Education -What does it mean?, Shaker, Aachen, 2002, 87-98
  133. R. Strenzel, I. Eilks, Praxis der Naturwissenschaften Chemie 8, 2005, 54, 44-47 Reference list
  134. AA.VV., Plastico, formas e colores dos materiais sinteticas, Fundacào Armando Alvares Penteado, Museo de Arte Brasileira -MAB, 18 de Maio a 7 de Julho de 2002 Colecào Maria Pia Incutti, Napoli.
  135. A. Baldini, L.P.Puglisi, PresS/Tmag, Mancosu Architectural book, Roma 2009 pp. 294-295.
  136. F. Bulegato, "Un contributo alla diffusione della 'cultura plastica': gli allestimenti dei fratelli Castiglioni per Montecatini" in C. Cecchini (a cura di), Mo... Moplen. Il design delle plastiche negli anni del boom, Rdesignpress, Roma 2006.
  137. C. Cecchini, "Allestire con le plastiche per mostrare le plastiche: una nobile tradizione" in G. Donini (a cura di) L'architettura degli allestimenti, Kappa, Roma 2010.
  138. A. Tecce (a cura di), In plastica, forme e colori dei materiali sintetici, Electa Napoli, Catalogo mostra Museo Pignatelli 8 giugno-16 settembre, 1990.
  139. Uhl, A. and W. Kestanek, Monatsh. Chem, 1923, 44, 29
  140. K.M. Chan, Homemade equipment for the teaching of electrochemistry at advanced level (Part II) The School Science Review, March 1985 pp 455-466, published by The Association for Science Education, U.K.
  141. Opekun, Smith and Graham, Antimony electrodes. Mucosal potential differences and buffer composition adversely affect pH measurements in the stomach. Dig Dis Sci. 1990 Aug: 35(8): 950-5.
  142. G. Milazzo, S. Caroli, and V. K. Sharma, Tables of Standard Electrode Potentials, Wiley, Chichester, 1978.
  143. K.L. Cheng and Da-Ming Zhu, On Calibration of pH Meters, Dept of Chemistry, University of Missouri-Kansas, 27 April 2005
  144. Harry W. Fox, Master Op-Amp applications handbook, 1978, TAB Books p. 97
  145. Gatty.O and ECR Spooner, The Electrode Potential Behaviour of Corroding Metals in Aqueous Solutions, Oxford University Press, London and New York, 1938, p. 331
  146. References
  147. Leaflet about Education with Enthusiasm, Educational Research Institute, http://www.eduentuzjasci.pl/en/
  148. Ewa Bartnik et. al., Polish Science Curriculum -Podstawa programowa z komentarzami Vol 5. Edukacja przyrodnicza w szkole podstawowej, gimnazjum i liceum przyroda, geografia, biologia, chemia, fizyka, Ministry of National Education, Warszawa 2009, in Polish
  149. Barbara Ostrowska, Krzysztof Spalik et al, Umiejętności złożone w nauczaniu historii i przedmiotów przyrodniczych - pomiar, zadania testowe z komentarzami, IFiS PAN, Warszawa 2010, in Polish
  150. Haladyna T.M., Downing S. M, Rodriguez M.C., Appl. Meas. Educ. 2002, 15(3), 309-334 Reference list
  151. P. Cieśla J.R. Paśko: Dlaczego pisanie równań reakcji chemicznych, w których powstają sole przysparza uczniom wiele kłopotów? In: Soudobé trendy v chemickém vzdělávání: aktuální otázky výuky chemie XVI, Gaudeamus, Hradec Králové, 2006
  152. M. Nodzyńska: Wpływ modeli graficznych występujących w podręcznikach do nauczania chemii w gimnazjum na wyobrażenia uczniów o mikroświecie w świetle badań. In: J.R. Paśko (ed.) Badania w dydaktyce chemii, Kraków: Wydawnictwo Naukowe AP, 2004, pp. 153-157
  153. L. Talley L. Journal Res. Science Teaching, 1973, 10, 263
  154. M. Nodzyńska: Modelowanie reakcji chemicznych w podręcznikach chemii dla liceum ogólnokształcącego. In: K. Myška, P. Opatrný (eds.) Modelování ve výuce chemie, Hradec Králové: Gaudeamus, 2005, pp. 56-58
  155. M. Nodzyńska: Wpływ wizualizacji procesów zachodzących w roztworach wodnych na stopień ich przyswojenia przez uczniów. In: J. Šibor (ed.) Mezinárodní seminář didactiků chemie, Masarykova univerzita, Brno, 2004
  156. M. Nodzyńska, J.R. Paśko, P. Cieśla, Journal of Science Education, vol. 13, 2012, pp. 28-33.
  157. M. Nodzyńska: Rola nieprecyzyjnych rysunków w tworzeniu się błędnych wyobrażeń u dzieci w nauczaniu przyrody. In: ScienEdu Aktuálne trendy vo vyučovaní prírodovedných predmetov, Univerzita Komenského v Bratislave, May 2007, pp. 321- 324
  158. J.R. Paśko: Cząsteczki czy jony: jak nauczać o strukturze mikroświata. In: M. Bilek (ed.) Aktuální otázky výuky chemie 9, Hradec Králové: Gaudeamus, 2000, pp. 152-155
  159. J.R. Paśko: Rola wyobrażeń w procesie edukacji chemicznej. In: M. Bilek (ed.) Aktuální otázky výuky chemie, Hradec Králové: Gaudeamus, 2005, pp. 87-92
  160. Guarna A. Colli L., Costa M. Verso un museo di Storia della Chimica a Firenze: il progetto Chemical Heritage, Memorie di Scienze Fisiche e Naturali, Rendiconti della accademia Nazionale delle Scienze detta dei XL, Atti del XIII Convegno Nazionale di Storia e Fondamenti della Chimica, Volume 127, pag. 391, Roma, 23-26 Settembre 2009
  161. Guarna A., Colli L., Costa M. La prima aula italiana dedicata alla Chimica. Storia della costruzione tra il 1879 e 1884 dell'Aula "Ugo Schiff" di Via Gino Capponi 9 a Firenze, La Chimica e l'Industria, pag. 104-108, Anno 93 n.3 -Aprile 2011
  162. Colli L., Costa M., Guarna A. Il Testamento di Ugo Schiff: il volto meno conosciuto di un grande scienziato, Memorie di Scienze Fisiche e Naturali, "Rendiconti della accademia Nazionale delle Scienze detta dei XL", Volume 128, 2011
  163. Tidwell, T. T.. Hugo (Ugo) Schiff, Schiff Bases, and a Century of β-Lactam Synthesis. Angewandte Chemie International Edition, 1016-1020. 2007
  164. Gelsomini, N.. Hugo Schiff e l'insegnamento della chimica a Firenze nella seconda metà dell'800. Atti del II Convegno Nazionale di Storia e Fondamenti della Chimica, 189. 1988
  165. Gelsomini, N., Costa, M., Manzelli, P., & Fiorentini, C.. La chimica a Firenze tra '800 e '900. Atti del IV Convegno Nazionale di Storia e Fondamenti della Chimica, 383. 1992
  166. Garin E. La cultura a Firenze al tempo di Ugo Schiff, Atti e memorie dell'Accademia fiorentina di scienze morali La Colombaria Vol. 59, n. 45 p. 201-216, 1994
  167. Rocca, S. V. Beni culturali e catalogazione: principi teorici e percorsi di analisi. Roma. Gangemi stampa. 2002
  168. Corti, L. I beni culturali e la loro catalogazione. Milano. Mondadori. 2003
  169. Alta Scuola Politecnica, http://www.asp-poli.it.
  170. P. Bivall, S.E. Ainsworth, L. Tibell, Science Education, 2011, Vol. 95 (4), 700-719.
  171. S. Comai, D. Mazza, Procs. of the 24th BCS Interaction Specialist Group Conference (BCS '10), 2010, 221-229.
  172. Rcsb protein data bank, http://www.rcsb.org.
  173. Sensable Phantom, http://www.sensable.com.
  174. M.W. Schmidt et al., General atomic and molecular electronic structure system, Journal of Computational Chemistry 14 (1993) 1347-1363.
  175. wxmacmolplt Web site, http://www.scl.ameslab.gov/MacMolPlt.
  176. P. Metrangolo, G. Resnati, Science 321 (2008) 918-919.
  177. An IUPAC Task Group set up to examine the definition of halogen bonding has not yet reported, so that given here should be taken as temporary (see www.iupac.org/web/ins/2009-032-1-100 and www.halogenbonding.eu).Use of Reference
  178. LÉVY, Pierre; As Tecnologias da Inteligência. Editora 34.1993.
  179. KOTZ, John C.; Química geral e as reações químicas -CENGAGE LEARNING.
  180. SILVA, A.L.M.; Simplesmente Cecília: A trajetória recente de uma escola e a educação infantil pública em Duque de Caxias. 2011. References
  181. F. Mannarino: La densità dei gas. In: F. Mannarino, Esperienze per il laboratorio di Chimica, pp 46-47. Ed. Mannarino, Brescia 2006.
  182. M. Rogers: The solubility of gases. In: Gas Syringe Experiments, pp 81-83. Heinemann Educational Books Ltd, London 1970.
  183. Seong-Joo Kang, Eun-Hee Ryu, Carbon Dioxide Fountain, J. Chem. Educ., 2007, 84, 1671-1672
  184. B. Perito, G. Mastromei, La carbonatogenesi batterica nella conservazione di opere d'arte, Biotec, 2000, 4, 30-37
  185. P. Levi: Carbonio. In: P. Levi, Il sistema periodico, pp 229-238. Einaudi, Torino, 2002, X ed.
  186. SCHNETZLER, R. P. A pesquisa em ensino de química no Brasil: conquistas e perspectivas. Química Nova, 2002, n. 25, p. 14 -24.
  187. MESQUITA, N. A. S.; SOARES, M. H. F. B. Aspectos históricos dos cursos de Licenciatura em Química no Brasil nas décadas de 1930 a 1980. Química Nova, 2011, v. 34, p. 165-174.
  188. DAMASCENO, D. ; GODINHO, Mariana da Silva ; SOARES, M. H. F. B. ; OLIVEIRA, Anselmo de Goiás, Brasil: Uma Análise Multivariada. Educación Química, 2010, v. 21, p. 246-253.
  189. BRASIL; Decreto n o 3.462, de 17 de Maio de 2000.
  190. BRASIL, Lei n° 11892 de 29 de Dezembro de 2008.
  191. BRASIL, 2009. Pesquisa Nacional por Amostra de Domicílios -PNAD/IBGE.
  192. B. Byers, I. Eilks, The need for innovation in higher chemistry education -A pedagogical justification. In I. Eilks & B. Byers (eds.) Innovative methods for teaching and learning chemistry in higher education, pp. 5-22, RSC Publishing, London, 2009.
  193. G. M. Bodner, J. Chem. Educ., 1986, 63, 873.
  194. M.C. Wittrock, Educ. Psych., 1989, 24, 325.
  195. D. Hodson, J. Hodson, Sch. Sci. Rev., 1998, 79 (289), 33.
  196. R. Driver, V. Oldham, Stud. Sci. Educ., 1986, 13, 22.
  197. R. Lazarowitz, R. Hertz-Lazarowitz: Co-operative learning in the science curriculum. In B. J. Fraser & K. G. Tobin (eds.) International handbook of science education, pp. 449-470, Kluwer, Dordrecht, 1998.
  198. D. W. Johnson, R. T. Johnson, Learning together and alone: Cooperative, competitive, and individualistic learning, Allyn & Bacon, Boston, 1999.
  199. I. Eilks, Chem. in Action, 2012 in print.
  200. O. De Jong, R. Blonder, J. Oversby: How to balance chemistry education between observing phenomena and thinking in models. In I. Eilks & A. Hofstein (eds.), Teaching chemistry-A studybook, Sense, Rotterdam in print
  201. A. Hofstein, M: Kipnis, I. Abrahams: How to learn in from the chemistry laboratory. In I. Eilks & A. Hofstein (eds.), Teaching chemistry-A studybook, Sense, Rotterdam in print.
  202. N. Poppe, S. Markic, I. Eilks, Low-Cost-lab techniques for the science classroom, SALiS Project, Bremen, 2011.
  203. I. Eilks, G. T. Prins, R. Lazarowitz: How to organize the classroom in a student-active mode. In I. Eilks & A. Hofstein (eds.), Teaching chemistry-A studybook, Sense, Rotterdam in print
  204. I. Eilks, J. Chem. Educ., 2005, 82, 313.
  205. T. Witteck, I. Eilks, Sch. Sci. Rev., 2006, 88 (323), 95.
  206. T. Witteck, I. Eilks, Sch. Sci. Rev., 2005, 86 (317), 107.
  207. T. Witteck, B. Most, G. Leerhoff, I. Eilks, Sci. Educ. Int., 2004, 15, 209.
  208. American Chemical Society, ChemCom. Chemistry in the Community, Kendall/Hunt Publishing Company: Iowa, 1988.
  209. University of York Science Education Group, Salter's Advanced Chemistry, Heinemann Publisher Ltd: Oxford, 1994.
  210. Sadler, T. (Ed.), Socio-scientific Issues in the Classroom, Springer, 2011.
  211. Kirschenmann, B. and Bolte, C., ParIS in Berlin: Bild Dir Deine Meinung... zum Thema Bioenergie, in: Höttecke, D. (Hg.), Naturwissenschaftlicher Unterricht im internationalen Vergleich, LIT Verlag: Berlin, 2006, 316-318.
  212. Kirschenman, B. and Bolte, C., Science in a Class of Its Own: Renewable Energy Sources -"My iPod Works with Energy from Bull Shit", PARSEL Consortium Teaching-Learning Materials, 2007.
  213. GANAJOVÁ, M., KALAFUTOVÁ, J., MŰLLEROVÁ, V., SIVÁKOVÁ, M. : Project based learning in chemistry. Bratislava: ŠPÚ, 2010. p.144. ISBN 978-80-8118-058-3.
  214. J. Holbrook, Chemical Education International, 2005, 6, 1.
  215. S.T. Belt, M.J. Leisvik, A.J. Hyde, T.L. Overton, Chem Educ Res Pract, 2005, 6(3), 166.
  216. L.P. Sá, S.L. Queiroz, Quím. Nova, 2007, 30(8), 2035.
  217. D. King, Studies in Science Education, 2012, 48, 1.
  218. H.W.P. Carvalho, A.P. Batista. Experiências de Ensino de Ciências, 2007, 2(3), 34.
  219. M.L.T.G. Mendonça, R.P. Cruz, 31ª Reunião Anual da SBQ, 2008, 1.
  220. I Eilks and B. Byers. Chemistry Education Research and Practice, 2010, 11, 233.
  221. R.F. Leite, M.A. Rodrigues, Ciência & Educação, 2011, 17, 1, 145.
  222. R.G. Garrido, F.O. Araújo, T.H. Oliveira, F.S.R.G. Garrido, RBEBBM, 2010, 1, 1.
  223. M.A.C. Albuquerque, A.H.C. Amorim, J.R.C.F. Rocha, L.M.F.G. Silveira, D.F. de M. Neri, Revista Brasileira de Educação Médica, 2012, 36 (1), 137.
  224. P. Ceroni, A. Credi, M. Venturi, V. Balzani, Photochem Photobiol. Sci., 2010, 9, 1561.
  225. UFRRJ, Projeto Político Pedagógico do Curso de Gestão Ambiental. http://r1.ufrrj.br/wp/itr/wp- ontent/uploads/file/ITR/g_amb/PROJETO_G_AMB_%20ITR_ APROVADO_CEPE.pdf,. Accessed 27 april 2012.
  226. Brasil. Decreto n. 6.096, de 24 de abril de 2007. Institui o Programa de Apoio a Planos de Reestruturação e Expansão das Universidades Federais -REUNI.
  227. J.F. Cislaghi, Serv. Soc. Soc., 2011, 106, 241.
  228. F.R. Freitas-Rego, M.G. Pereira, S.O. Loureiro, M.T.de Santana, R.G. Garrido, F.S.R.G. Garrido, RBEBBM., 2007, 7, 21.
  229. A.C. Pinto, Revista Virtual de Química, 2012, 4, 2, 101.
  230. M.V. Dias, P.I. Guimarães; F. Merçon. Química Nova na Escola, 2003, 17, 27.
  231. A.L.P. Nery, C. Fernandez, Química Nova na Escola, 2004, 19, 39.
  232. IUPAC, The International Year of Chemistry 2011 (IYC 2011), Activities: pH of the planet, http://www.chemistry2011.org, Accessed 09 august 2012.
  233. P.A.deA. Freitas, A.F.daS. Mariano, J.deA.Couto, J, X JORNADA DE ENSINO, PESQUISA E EXTENSÃO -JEPEX, 2010.
  234. C.A. Spadotto, M.A.F. Gomes, M.B. Matallo, L.C. Luchini. XIII Congresso Brasileiro de Águas Subterrâneas, 2011.
  235. Giordan A., In Giordan A., Girault Y.,Clément P., Conceptions et connaissances, Peter Lang, Berne (Switzerland), 1994
  236. Tsaparlis G., J. Chem. Educ., 1997, 74, 922-925.
  237. Nelson P.G., Chem. Educ. Res. Pract. Eur., 2002, 3, 215-228.
  238. Kozma R., Chin E., Russel J., Marx N., Journal of the Learning Sciences, 2000, 9, 105-143.
  239. Fochi G., Il segreto della chimica, TEA, Milano (Italy), 1999
  240. C.-J. Guo, Issues in science learning: an international perspective. In: S.K. Abell, N.G. Lederman (Eds.), Handbook of research on science education, pp.227-256, Erlbaum, Malwah, NJ, (2007).
  241. T.A. Sondergeld, R.A. Schultz, Gifted Child Today, 2008, 31, 34-40.
  242. C.A. Tomlinson, Educational Leadership, 2000, 58, 6-11.
  243. R.D. Hoge, T. Coladarci, Review of Educational Research, 1989, 59, 297-313.
  244. N. McElvany, S. Schroeder, A. Hachfeld, J. Baumert, T. Richter, W. Schnotz, H. Horz, M. Ullrich, Zeitschrift für Pädagogische Psychologie, 2009, 23, 223-235.
  245. R. McTaggert: Adult Education Quarterly, 1991, 41, 168-187.
  246. G. Bodner, D. MacIsaac, S. White, University Chemistry Education, 1999, 3, 31-36.
  247. D. MacIsaak: An Introduction to Action Research. http://physicsed.buffalostate.edu/danowner/actionrsch.html. (accessed 6 July 2012)
  248. P. Mayring: Qualitative content analysis -research instrument or mode of interpretation?. In: M. Kiegelmann (Ed.), The Role of the Researcher in Qualitative Psychology, pp.139-148. Huber Tübingen, (2002).
  249. H. Gulińska, M. Bartoszewicz, Natural science in the joint programme chemistry and nature, Journal of Science Education vol. 9, 2008, s. 21-25
  250. H. Gulińska Interesting Chemistry -A Multimedia Task Collection, Research, Reflections and Innovations in Integrating ICT in Education, FORMATEX, Badajoz Spain 2009, Vol. 1.978-84-692-1789-4, ss. 397-403
  251. H. Gulińska., Multimedial Handbooks of Chemistry -multimedia collection task, ICT in Chemical Education, Wyd. Sowa, Poznań 2009, ISBN 83-89723-65-4, s. 31-38
  252. H. Gulińska Using new technologies in teaching chemistry, Chemistry Education in the ICT Age, Springer 2009, 131-144
  253. H. Gulińska Modern computer games as elements of teaching chemistry in Polish junior high schools, Journal of Science Education vol. 11, 2010, s. 4-7
  254. References
  255. Sadler, T. D., & Zeidler, D. (2005). Patterns of informal reasoning in the context of socioscientific decision-making. Journal of Research in Science Teaching, 2005, 42(1), 112-138.
  256. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What Do Students Gain by Engaging in Socioscientific Inquiry. Research in Science Education, 37, 371-391.
  257. Albe, V. (2008). Students' positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17(8-9), 805-827.
  258. Poschmann, C., Riebenstahl, C., & Schmidt-Kallert, E. (1998). Umweltplanung und -bewertung [planning and evaluation of environment]. Gotha: Justus Perthes Verlag.
  259. KMK. (2005). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss [Educational standards in chemistry for the general educational school-leaving certificate after grade 10]. Neuwied: Luchterhand.
  260. Aufschnaiter, C. von, Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to Learn and Learning to Argue: Case Studies of How Students' Argumentation Relates to Their Scientific Knowledge. Journal of Research in Science Teaching, 45(1), 101-131.
  261. Uskola, A., Maguregi, G., & Jiménez-Aleixandre, M.-P. (2010). The Use of Criteria in Argumentation and the Construction of Environmental Concepts: A university case study. International Journal of Science Education, 32(17), 2311- 2333.
  262. Sedlmeier, P., & Renkewitz, F. (2008). Forschungsmethoden und Statistik in der Psychologie. (Research methods and statistics in Psychology). Psychologie. München: Pearson Studium. Retrieved from http://www.gbv.de/dms/ilmenau/toc/514026561.PDF
  263. Kaiser, F. G., Wölfing, S., & Fuhrer, U. (1999). Environmental Attitude and Ecological Behaviour. Journal of Environmental Psychology, (19), 1-19.
  264. Astleitner, H., Brünken, R., & Zander, S. (2002). Können Schüler und Lehrer kritisch denken? Lösungserfolg und -strategien bei typischen Aufgaben. (Can szudents and teacher think critically?). Salzburger Beiträge zur Erziehungswissenschaft, (6), 51-61.
  265. Hostenbach, J., Fischer, H. E., Kauertz, A., Mayer, J., Sumfleth, E. & Walpuski, M. (2011). Modellierung der Bewertungskompetenz in den Naturwissenschaften zur Evaluation der Nationalen Bildungsstandards. (Modeling the evaluation and judgement competence in science to evaluate national educational standard) Zeitschrift für Didaktik der Naturwissenschaften, 17, 261-288.
  266. Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, N.J: Lawrence Erlbaum Associates.
  267. A.F.M. Fahmy, J.J Lagowski, The Use of Systemic Approach in Teaching and Learning Chemistry for the 21 st century, Pure and Applied Chemistry, 1999, 71 (5), pp. 859-863
  268. Z. Al-bashaireh, Systemic Approach Effect on Achievement on Tafila Schools Students in Sciences, International Journal of Humanities and Social Science, 2011, 1 (3), pp. 47-52
  269. G. Tsaparlis, Globalization in Chemistry Education Research and Practice, Chemistry Education: Research and Practice, 2003, 4 (1), pp. 3-10
  270. N. Guarino, P. Giaretta: Ontologies and Knowledge Bases Towards a Terminological Clarification. In: N.J.L. Mars, Towards Very Large Knowledge Bases: Knowledge Building & Knowledge Sharing, pp. 25-32, IOS Press, Amsterdam, Netherlands, 1995
  271. F. Deloule, C. Roche, Ontologies & Knowledge Representation, IEEE International Conference on Systems, Man and Cybernetics: Inteligent Systems for the 21 st Century, Vancouver, British Columbia, Canada, October 1995, p. 3857
  272. T.R. Gruber, Toward principles for the design of ontologies used for knowledge sharing, International Journal of Human- Computer Studies, 1995, 43, pp. 907-928
  273. T.R. Gruber, A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition, 1993, 5 (2), pp. 199-220
  274. A. Aldea, R. Bañares-Alcántara, J. Bocio, J. Gramajo, D. Isern, A. Kokossis, L. Jiménes, A. Moreno, D. Riaño, An Ontology-Based Knowledge Management Platform, ArnetMiner: www.arnetminer.org/publication/an-ontology-based- knowledge-management-platform-387346.html, Accessed 31. July 2012.
  275. T.R. Gruber, Ontolingua: a mechanism to support portable ontologies. Technical Report KSL 91-66, 1992, Stanford University, Knowledge System Laboratory. Revision
  276. C. Brewster, K. O'Hara, Knowledge Representation with Ontology: The Present and Future, Intelligent Systems, IEEE, 2004, 19, pp. 72-81
  277. D. Dicheva, P. Brusilovsky, T. Gavrilova, P. Brusilovsky, Ontological Web Portal for Educational Ontologies, Workshop on Applications Of Semantic Web Technologies for E-Learning, The 12 th International Conference on Artificial Intelligence in Education, Amsterdam, July 2005, p. 19-27
  278. L.L. Chen, C.W. Chan, Ontology Construction from Knowledge Acquisition, Pacific Knowledge Acquisition Workshop (PKAW), Sydney, December, 2000
  279. A.F.M. Fahmy, J.J. Lagowski, Systemic Approach to Teaching and Learning Chemistry: SATLC in Egypt, Chemical Education International, 2002, 3
  280. J. Adamov, M. Segedinac, S. Cvjetićanin, R. Bakoš, Concept Maps as Diagnostic Tools in Assessing the Acquisition and Retention of Knowledge in Biochemistry, Odgojne Znanosti, 2009, 11 (1), pp. 53-71
  281. J.D. Novak, Meaningful Learning: The Essential Factors for Conceptual Change in Limited or Inappropriate Propositional Hierarchies Leading to Empowerment of Learners, Science Education, 2002, 86, 548-571
  282. K.L. Evans, G. Leinhardt, M. Karabinos, D. Yaron, Chemistry in the Field of Chemistry in the Classroom: A Cognitive Disconnected? Journal of Chemical Education, 2006, 83, 665-671
  283. A.E. Okanlawon, Constructing a Freamework for Teaching Reaction Stoichiometry Using Pedagogical Content Knowledge, Chemistry, 2010, 19 (2), pp. 27-44
  284. Z. Xia, Thinking Towards Teaching Physical Chemistry in China: How to Increase the Learning Interest in This Course, China Papers, (2), pp. 25-27
  285. K.L. Evans, D. Yaron, G. Leinhardt, Learning stoichiometry: a comparison of text and multimedia formats, Chemistry Education Research and Practice, 2008, 9, pp. 208-218
  286. R. M. Heyworth, Quantitative problem Solving in Science: Cognitive Factors and Directions for Practice, Education Journal, 1998, 26 (1), pp. 13-29
  287. E.M. Alake, K.O. Oloruntagbe, Chemistry for Today and the Future: Sustainability Through Virile Problem-based Chemistry Curriculum, Australian Journal of Basic and Applied Sciences, 2010, 4 (5), pp. 800-807
  288. a: Stewart, J. J. P., 1989, J Comp. Chem., 10, 209-220; b: Stewart, J. J. P., 1989, J. Comp. Chem., 10, 221-264; c: Stewart, J. J. P., 1991, J. Comp. Chem., 12, 320-341.
  289. Fukui, K., 1970, J. Phys. Chem., 74, 4161-4163.
  290. Martin, J. D. D. and Hepburn, J. W., 1998, J. Chem. Phys., 109, 8139-8142.
  291. Deskevich, M. P., Hayes, M. Y., Takahashi, K., Skodje, R. T. and Nesbitt, D. J., 2006, J. Chem. Phys., 124, 224303-1- 224303-12.
  292. Kahn, S. D., Pau, C. F., Overman, L. E. and Hehre, W. J., 1986, J. Am. Chem. Soc., 108, 7381-7396.
  293. Robert C. Weast, 1982, "CRC Handbookof Chemistry and Physics" 63rd Ed., CRC Press, Inc, F180-181.
  294. S. Shida, 1981, "Kagakujiten", Morikitasyuppan, p.1251.
  295. Nihonkagakukai-hen, "Kagakubinran Kisohen" 3rd. Ed., Maruzen, 1984, II-314.
  296. M. Kapanadze, S. Janashia I. Eilks in I. Eilks & B. Ralle (eds.) Contemporary science education, 2010, 237.
  297. M. Kapanadze, S. Janashia, I. Eilks, S. Markic, M. Stuckey. ESERA conference, Lyon, September 2011.
  298. M. Kapanadze, S. Janashia, I. Eilks in I. Eilks & B. Ralle (eds.) Contemporary science education, 2012 (in print).
  299. M Kapanadze. Chemistry in Action, 2012 (in print).
  300. R. Barlet, D. Plouin, Aster, 1997, 25, 143.
  301. N. Barnea, Y. J. Dori, J. Sci. Educ. Technol., 1999, 8, 257.
  302. R. Duval, Annales de Didactique et de Sciences Cognitives, 2005, 10, 5.
  303. R. Duval, Educational Studies in Mathematics, 2006, 61, 103.
  304. J.K. Gilbert: Visualization: a metacognitive skill in science education. In J.K. Gilbert (ed) Visualization in science education, pp. 9-28. Springer, Dordrecht, the Netherlands, (2005).
  305. M. Harle, M. Towns, J. Chem. Educ., 2011, 88, 351.
  306. P. Marchand, Annales de Didactique et de Sciences Cognitives, 2006, 11, 103.
  307. V. Pellegrin, A. Sivade, R. Barlet, Bull. Un. Phys., 2003, 97, 909 .
  308. M. Stieff, Sci. Educ., 2011, 95, 310.
  309. H. Tuckey, M. Selvaratnam, J. Bradley, J. Chem. Educ., 1991, 68, 460.
  310. H-K. Wu, P. Shah, Sci. Educ., 2004, 88, 465.
  311. S. Rotering-Steinberg, Unterrichtswissenschaft, 1995, 23(4), 332-346
  312. E. Sumfleth, A. Pitton, Zeitschrift für Didaktik der Naturwissenschaften, 1998, 4(2)
  313. A. Schulz, Experimentierspezifische Qualitätsmerkmale im Chemieunterricht. Eine Videostudie (Experiment-specific quality characteristics in chemistry class. A video study), Berlin, Logos, 2011
  314. M. Walpuski, N. Kampa, A. Kauertz, N. Wellnitz, Der mathematische und naturwissenschaftliche Unterricht, 2008, 61 (6) 323-326
  315. A. Lau, K. Neumann, H.E. Fischer, E. Sumfleth, Video Analyses -Classroom observations and analyses through video recordings -methodological, analytical and conceptual challenges, Oslo, Norwegen, 2007
  316. M. Walpuski, I. Wahser, E. Sumfleth: Improvement of Inquiry-Learning Using Collaborative Tasks. In: B. Ralle & I. Eilks (Eds.): Promoting Successful Science Education -The Worth of Science Education Research (pp. 197-201). Shaker, Aachen, 2008
  317. K. A. Heller, C. Perleth, Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision (KFT 4-12+R) (Coginitve ability test). Göttingen, Beltz Test GmbH, 2000
  318. S. Klos, C. Henke, C. Kieren, M. Walpuski, E. Sumfleth, Zeitschrift für Pädagogik, 2008, 54 (3), 304-322
  319. M. Walpuski, Optimierung von experimenteller Kleingruppenarbeit durch Strukturierungshilfen und Feedback. Eine empirische Studie. (Optimisation of experimental small-group work by structuring aids and feedback), Berlin, Logos, 2006
  320. N. Sokmen, H. Bayram, Egitim ve Bilim, 2002, 27 (124), 56-60.
  321. B. Costu, F. O. Karatas, A. Ayas, Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 2003, 2 (14), 33-48.
  322. A. Yildirim, H. Simsek, H, Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Seckin Yayincilik, Ankara 2006.
  323. M. Calik, A. Ayas, Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 2003, 2 (4), 1-17.
  324. PISA (Eds.), Educational level of young people in Germany [PISA-Konsortium Deutschland (Hrsg.), Der Bildungsstand der Jugendlichen in Deutschland] Münster, Waxmann, 2004.
  325. Union of Education and Science, National educational standards -panacea or appalling stuff? [GEW, Nationale Bildungsstandards -Wundermittel oder Teufelszeug? Funktionen, Hintergründe und Positionen der GEW, Gewerkschaft Erziehung und Wissenschaft (Allgemeiner Deutscher Lehrer-und Lehrerinnen-Verband] Frankfurt/ Main, pp.12f., 2003.
  326. Klieme, E.; Avenarius, H.; Blum, W.; Döbrich, P.; Gruber, H.; Prenzel, M.; Reiss, K.; Riquarts, K.; Rost, J.; Tenorth, H.-E.
  327. & Vollmer, H. J., Development of national educational standards: an expertise, Ministry of Education and Research (BMBF) (Eds.) [Zur Entwicklung nationaler Bildungsstandards: eine Expertise, Bundesministerium für Bildung und Forschung (Hrsg.)] Bonn, Berlin, pp.10ff., 2009.
  328. Association for Didactics, Minimum standards at the end of compulsory school time, [GFD, Mindeststandards am Ende der Pflichtschulzeit. In: Zeitschrift für Didaktik der Naturwissenschaften] Journal of Science Education, year 15, p.1, 2009.
  329. KMK -Conference of Ministry of Education (Eds.), Educational standards for German, Mathematics and English at the age of 15 [KMK -Kultusministerkonferenz (Hrsg.), Bildungsstandards für den Hauptschulabschluss für die Fächer Deutsch, Mathematik, erste Fremdsprache] Berlin, 2004a. http://www.kmk.org/fileadmin/veroeffentlichungen\_beschluesse/2004/2004\_10\_15-Bildungsstandards-Haupt.pdf (20.08.2012)
  330. KMK -Conference of Ministry of Education (Eds.), Educational standards of KMK, explanation for conception and development [Bildungsstandards der Kultusministerkonferenz, Erläuterungen zur Konzeption und Entwicklung] Berlin, 2004b. http://www.kmk.org/fileadmin/veroeffentlichungen\_beschluesse/2004/2004\_12\_16-Bildungsstandards-Konzeption- Entwicklung.pdf (20.08.2012)
  331. Senate of Berlin (Eds.), Curriculum of chemistry at the age 13-16 [SenBJS (Hrsg.), Rahmenlehrplan für die Sekundarstufe I, Chemie] Berlin, 2006. http://www.berlin.de/imperia/md/content/sen-bildung/schulorganisation/lehrplaene/sek1\_chemie.pdf? start&ts=1245159489&file=sek1_chemie.pdf (20.08.2012)
  332. McLeod, D. B.; Stake, R. E; Schappelle, B.; Mellissinos, M. & Gierl, M. J., Setting the Standards: NCTM's role in the reform of mathematics education, S. A. Raizen & E. D. Britton (Eds.), Bold ventures: U.S. innovations in science and mathematics education. Vol 3: Cases in mathematics education, pp.13-132, Dordrecht, The Netherlands: Kluwer, 1996.
  333. Becker, G.; Bremerich-Vos, A.; Demmer, M.; Maag Merki, K.; Priebe, B.; Schwippert, K.; Stäudel, L. & Tillmann, K.J. (Eds.), Standards: teaching between competencies, central exams and tests [Standards: Unterrichten zwischen Kompetenzen, zentralen Prüfungen und Vergleichsarbeiten] Seelze, Erhard Friedrich GmbH, 2005.
  334. Ralle, B., Do we need minimum standards? [Brauchen wir Mindeststandards?] MNU, year 62, booklet 5/2009, p. 259, 2009.
  335. Reiss, K., Minimum standards as challenge for math class. In: Heinze, A.; Grüßing, M. (Eds.): Learning mathematics from kindergarten up to college [Mindeststandards als Herausforderung für den Mathematikunterricht. In: Heinze, A.; Grüßing, M. (Hrsg.): Mathematiklernen vom Kindergarten bis zum Studium] Münster, Waxmann, p.191-189, 2009.
  336. Avenarius, H.; Heckel, H.; Loebel, H.-C., school laws: manual for practice, law and science [Schulrechtskunde: Ein Handbuch für die Praxis, Rechtsprechung und Wissenschaft] edition 7, Luchterhand, Neuwied, 2006.
  337. Bortz, J. & Döring, N., Research methods and evaluation for human and social scientists [Forschungsmethoden und Evaluation für Human-und Sozialwissenschaftler] Springer, Heidelberg, p.177, 2006.
  338. KMK -Conference of Ministry of Education (Eds.), Educational standards in chemistry education at the age of 16 [Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss] Berlin, 2004c. http://www.kmk.org/fileadmin/veroeffentlichungen\_beschluesse/2004/2004\_12\_16-Bildungsstandards-Chemie.pdf (20.08.2012)
  339. KMK -Conference of Ministry of Education (Eds.), Strategy of support for underachieving students [Förderstrategie für leistungsschwächere Schülerinnen und Schüler] Berlin, p. 10, 2010. http://www.kmk.org/fileadmin/veroeffentlichungen\_beschluesse/2010/2010\_03\_04-Foerderstrategie-Leistungsschwaechere.pdf (20.08.2012)
  340. References Ayas, A. and Özmen, H. Asit-Baz Kavramlarının Güncel Olaylarla Bütünleştirilme Seviyesi: Bir Örnek Olay Çalışması. III. Ulusal Fen Bilimleri Eğitimi Sempozyumu, KTÜ, Trabzon (In Turkish).1998.
  341. Başaran, İ. E. Türkiye Eğitim Sistemi. Ankara. Kadıoğlu Matbaası 1998.
  342. BouJaoude, S. B., (1991). A Study of the Nature of Students' Understanding about the Concept of Burning, Journal of Research in Science Teaching, 28(8): 689-704.
  343. Guzzetti, B. J., (2000). Learning Counter Intuitive Science Concepts: What Have We Learned From Over a Decade of Research?, Reading, Writing, Quarterly, 16(2): 89-95.
  344. Hewson, P. W. and Hewson, M. G., (1984). The Role Conceptual Conflict in Conceptual Change and The Design of Science Instruction, Instructional Science, 13, 1-13.
  345. Kadıoğlu, A. K. (1996). Fen Bilimleri-I ve II'de Yer Alan Bazı Kimyasal Kavramların Öğrenciler Tarafından Anlaşılma Seviyesi. KTÜ Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Trabzon (In Turkish).
  346. Ozmen, H., İbrahimoğlu, K. and Ayas, A. (2000). Lise II Öğrencilerinin Kimya-I Konularında Zor Olarak Nitelendirdikleri Kavramlar ve Bunların Anlaşılma Seviyeleri. IV. Ulusal Fen Bilimleri Eğitimi Sempozyumu, Hacettepe Üniversitesi Eğitim Fakültesi, Ankara (In Turkish).
  347. Özmen, H. ve Kolomuç, A., (2004). Bilgisayarlı Öğretimin Çözeltiler Konusunda Öğrencilere Etkisi, Gazi Üniversitesi Kastamonu Eğitim Fakültesi Dergisi 12: 57-68.
  348. Literature References
  349. D. Uznadze, The Psychology of Mood. Tbilisi 1999.
  350. A.Woolfolk, Educational psychology, Allyn and Bacon, Sydney 2000.
  351. U. Kask, J.D. Rawn, General Chemistry, Oxsford, England 2000.
  352. M. Freemantle, Chemistry in Action, "Mir", Moscow 1991.
  353. K. Kupatadze, P.S.J. "Georgia Chemical Journal", 2005, 3(5), 107-118 Reference List
  354. Z. M. Lerman: Chemistry and Chemical Education as a Bridge to Peace. In: Minu Gupta-Bhowon, Sabina Jhaumeer-Laulloo, Henri Li Kam Wah, Ponnadurai Ramasami (eds.) Chemistry Education in the ICT Age, pp. 1-10. Springer, Netherlands, (2009)
  355. Malta Conferences Foundation website. www.MaltaConferencesFoundation.org. Accessed 15 September 2012.
  356. Z. M. Lerman, J. Chem. Ed, 1986, 63, 142.
  357. Z. M. Lerman, Chemical Education International, 2001, 2:1, 6-13.
  358. H. Gardner, Multiple Intelligences: The Theory in Practice. HarperCollins Publishers, Inc., New York, (1993)
  359. R. Hoffman, V. Torrence, Chemistry Imagined: Reflections on Science. Smithsonian Institution Press, Washington D.C., (1993)
  360. Z. M. Lerman, J. Chem. Ed. 2003, 80:11, 1234-1242.
  361. S. S. Zumdahl, S. A. Zumdahl, Chemistry: An Atoms First Approach, Brooks/Cole, Australia 2012.
  362. R. N. Levine, Physical Chemistry, 5th ed., McGraw-Hill, New York, 2002, pp. 387-413.
  363. D. C. Harris, Exploring chemical analysis, W. H. Freeman and Company, New York, 2009.
  364. D. Chouchi, D. Barth, E. Reverchon,G. DellaPorta, J. Agric. Food Chem. 1996, 44, 1100.
  365. L. J. Hendricks, J. T. Williams, J. Chem. Educ. 1992, 69, 655.
  366. S. Barrek, O. Paisse, M. F. Grenier-Loustalot, Anal. Bioana.l Chem. 2003, 376,157.
  367. G. Ruberto, A. Renda, , M. Piattelli, P. Rapisarda, A. Starrantino, J. Agric. Food Chem. 1997, 45, 467.
  368. D. Kalemba, A. Kunicka, Curr. Med. Chem. 2003, 10, 813.
  369. P. K. Wilmsen, D. S. Spada, M. Salvador, J. Agric. Food Chem., 2005, 53, 4757.
  370. A. D. Mauro, B. Fallico, A. Passerini, P. Rapisarda, E. Maccarone, E. J. Agric. Food Chem. 1999, 47, 4391.
  371. D. L. Hjeresen, D.L., Schutt, J. M. Boese, J.M. J. Chem. Educ. 2000, 77, 1543.
  372. L. P. Sá, S. L. Queiroz. 2 a Ed. Campinas: Átomo, 2009.
  373. L. P. Sá, C. A. Francisco, S. L. Queiroz. Química Nova na Escola, v. 30, n. 3, p. 731-739, 2007.
  374. F. J. Dinan, S. H. Szczepankiewicz; M. Carnahan, M. T. Colvim. Journal of Chemical Education, v. 84, n. 4, p. 617-618, 2007.
  375. J. M. Lantz, J. E. Feindt, E. P. B. Lewellyn, M. M. Journal of Chemical Education, v. 76, n. 12, p.1671-1672, 2000.
  376. L.H. Sasseron; A. M. P. Carvalho. Ciência & Educação, v.17, n.1, p.97-114, 2011.
  377. C. C. Guimarães. Química Nova na Escola, v. 31, n. 3, p. 198-202, agosto, 2009.
  378. C. F. Herreid. Jounal of College Science Teaching, v. 27, n. 3, p. 163-169, 1998.
  379. S. Toulmin. São Paulo: Martins Fontes, 2001.
  380. S. Erduran, S. Simon, J. Osborne. Science Education, v. 88, n. 6, p. 815-933, 2004.
  381. D. F. Shell, D. W. Brooks, G. Trainin, K. M. Wilson, D. F. Kauffman, L. M. Herr The Unified Learning Model: How motivational cognitive, and neurobiological sciences inform the best teaching practices (Vol. 1). New York, NY: Springer Science+Business Media, 2010.
  382. A. W. Chickering, Z. F. Gamson. Am. Assoc. Higher Educ., Bull., 1987, 39, 3
  383. M. Mendicino, L. Razzaq, N. T. Heffernan. J. Res. Tech. Educ., 2009, 41, 331
  384. B. Botch, R. Day, W. Vining, B. Stewart, K. Rath, K., Peterfreund, A., Hart, D. J. Chem. Educ., 2007, 84, 547
  385. M. Richards-Babb, J. Drelick, Z. Henry, J. Robertson-Honecker. J. Coll. Sci. Teach., 2011, 40, 81
  386. M. Richards-Babb, J. Jackson. Chem. Educ. Res. and Prac., 2011, 12, 409
  387. R. S. Cole, J. B. Todd. J. Chem. Educ., 2003, 80, 1338
  388. C. A. De Vega, L. McAnally-Salas. US-China Educ. Rev., 2011, 1, 10
  389. B. Freasier, G. Collins, P. Newitt. (2003). J. Chem. Educ., 2003, 80(11), 1344
  390. J. Goodwin, B. Gilbert. J Chem. Educ., 2001, 78, 490
  391. M. Oliver-Hoyo. (2001). J. Chem. Educ., 2001, 78, 1425
  392. M. L. Epstein, B. B. Epstein, G. M. Brosvic. Psych. Rep., 2001, 88, 889
  393. R. D. Arasasingham, I. Martorell, T. M. McIntire. J. Coll. Sci. Teach., 2011, 40(6), 70
  394. J. Cuadros, G. Leinhardt, D. Yaron. J. Chem. Educ., 2007, 84, 1047
  395. D. Collard, S. Giradot, H. Deutsch. J. Chem. Educ., 2002, 79, 520
  396. I. Shibley, K. Amaral, J. Shank, L. Shibley. J. Coll. Sci. Teach., 2011, 40, 80
  397. Assessment and LEarning in Knowledge Spaces : ALEKS. http://www.aleks.com/about\_aleks. Accessed 15 Aug 2012
  398. Catalyst : WileyPLUS course. https://www.wileyplus.com/WileyCDA/Section/CATALYST-for-General-Chemistry-Online- Mastery-Learning-System-for-Chemistry.id-402836.html. Accessed 15 Aug 2012
  399. MasteringChemistry : Pearson. http://masteringchemistry.com/site/product/for-instructors.html. Accessed 15 Aug 2012 20. Online Web-based Learning : OWL. http://www.cengage.com/owl/index.html. Accessed 15 Aug 2012
  400. OWLBook. http://www.youtube.com/watch?v=SblZHPC4CZA. Accessed 15 Aug 2012
  401. SaplingLearning. https://www.saplinglearning.com. Accessed 15 Aug 2012
  402. SmartWork : W. W. Norton. http://www.wwnorton.com/college/chemistry/gilbert2/smartwork.asp. Accessed 15 Aug 2012
  403. Flinn Scientific, Inc. Smashing Thermit Reaction. ChemFax!, http://www.flinnsci.com/Documents/demoPDFs/Chemistry/CF10503.pdf (accessed 19 August 2012)
  404. J. R. Appling, F. J. Yonke, R. A. Edgington, S. Jacobs, J Chem Ed, 1993, 70, 250
  405. Flinn Scientific, Inc. Old Foamey: A Classic Demonstration of a Catalyst. ChemFax!, http://www.flinnsci.com/documents/demopdfs/chemistry/cf0398.00.pdf (accessed 19 August 2012)
  406. C. A. Trujillo, J Chem Ed, 2005, 82, 855
  407. D. A. Katz, Chymist.com, http://www.chymist.com/hot%20and%20cold.pdf (accessed 19 August 2012)
  408. P. J. Garnett, D. F. Treagust. Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (Galvanic) and electrolytic cells, Journal of Research in Science Teaching, 1992, 29, 10, 1079-1099.
  409. K. Bouraoui, M. Chastrette. Conceptions of French and Tunisian students on conduction in electrochemical cells. Didaskalia, 1999, 14, 39-60.
  410. A. Laugier, A. Dumon. In search of the epistemological obstacles to the construction of the chemical element concept by the pupils of second. Didaskalia, 2003, 22, 69-97.
  411. M-H. Chui. A national survey of students' conceptions in Chemistry in Taiwan, Chemical Education International, 2005, 6. 1, 1-8.
  412. M. Niaz. How to facilitate students' conceptual Understanding of chemistry? -A history and Philosophy of science perspective. Chemical Education International, 2005, 6, 1, 1-5.
  413. A. Tiberghien. Of the naive knowledge to the scientific knowledge. In M. Kail, M. Fayol (dir.). The cognitive sciences and the school.The question of the trainings, pp. 333-443. Presses Universitaires de France, Paris, 2003.
  414. P. Devaux. History of the electricity. Collection Que sais-je? Presses Universitaires de France, France, 1954.
  415. C. Blondel. Electricity and magnetism in the XIXé century. In J. Rosmorduc, (dir.): History of the physics (Tome 1). Technique et Documentation -Lavoisier, pp. 185-215, Lavoisier -Tec & Doc, Paris, 1987.
  416. B. Bensaude-Vincent, I. Stengers. History of the chemistry, La Découverte, Paris 1993. Riferimenti bibliografici (Note that Refs.1 and 2 are available free of charge via the Internet at http://www.soc.chim.it/it/riviste/chimica\_nella\_scuola)
  417. F. Calascibetta, G. Moretti, CnS La Chimica nella Scuola 2012, 34(1), 24
  418. F. Calascibetta, G. Moretti, CnS La Chimica nella Scuola 2011, 33(5), 320
  419. E. K. Jacobsen, J. Chem. Educ. 2011, 88, 530 (JCE Resources for chemistry and water: an update for the International Year of Chemistry. www.chemistry2011.org accessed 30 July 2012.)
  420. C. E. White, J. L. Provis, J. Phys. Chem. C 2012, 116,1619
  421. K. J. Laidler, J. H. Meiser, Physical Chemistry, Houghton Mifflin Company, Boston 1999, 3rd edition, pp. 264-319 ( Cap.7 Solutions of electrolytes).
  422. P. Vanysek, Handbook of Chemistry and Physics, D.R. Lide (Editor-in-Chief) 87 th Edition, 2006-2007, pp. 5-76 e 5-77 (Ionic conductivity and diffusion at infinite diluition.)
  423. References
  424. H. Yoshikawa et al., Mirai he Hirogaru Saiensu 1 (Junior High School Science in Japan 1), Keirinkan, Tokyo 2012 (in Japanese)
  425. A. Arima et al., Rika no Sekai 1 (Junior High School Science in Japan 1), Dainippontosho, Tokyo 2012 (in Japanese)
  426. S. Okamura et al., Atarashii Kagaku 1 (Junior High School Science in Japan 1), Tokyoshoseki, 2012 (in Japanese)
  427. M. M. Singh, R. M. Pike, and Z. Szafran, Mircroscale and Selected Macroscale Experiments for General and Advanced General Chemistry, Wiley, New York 1995
  428. J. Skinner, Microscale Chemistry, Royal Society of Chemistry, London 1997
  429. K. L. Williamson, J. G. Little, Microscale Experiments for General Chemistry, Houghton Mifflin, Boston 1997
  430. The Chemical Society of Japan (ed.), Microscale Chemistry Experiments, Tokyo 2003 (in Japanese)
  431. C. B. Bishop, M. B. Bishop, and K. W. Whitten, Standard and Microscale Experiments in General Chemistry, Fifth Edition, Brook/Cole, Belmont 2004
  432. H. Shibahara, Y. Sato, Microscale Experiments, Ohmusha, Tokyo 2011 (in Japanese)
  433. T. Nakagawa, Rika no Kyoiku (Science Education in Japan), 2007, 56(8), 566 (in Japanese)
  434. T. Nakagawa, 21 st International Conference on Chemical Education, Taipei, August 2010, p. 79
  435. T. Nakagawa, Chemical Education and Sustainability in the Global Age (Proceedings of 21st ICCE in Taipei), Springer, in press
  436. T. Nakagawa, The International Chemical Congress of Pacific Basin Societies (Pacifichem), Honolulu, December 2010, http://www.pacifichem.org/ Accessed 10 December 2010
  437. W. M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 92 nd ed., CRC Press, Boca Raton 2011
  438. T. Nakagawa, Educ. Chem. 1998, 35(4), 108
  439. References
  440. W. A. Sandoval, B. J. Reiser, Science Education, 2004, DOI: 10.1002/sce.10130
  441. L. H. Barrow, Journal of Science Teacher Education, 2006, DOI: 10.1007/s10972-006-9008-5
  442. KMK, Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss (Jahrgangsstufe 10), Luchterhand , München 2005.
  443. M. Fenichel, H. Schweingruber Surrounded by science: Learning science in informal environments, The National Academies Press 2010.
  444. W. Breslyn, J. R. McGinnis, Science Education, 20212, DOI: 10.1002/sce.20469
  445. A. Nehring, K. H. Nowak, A. Upmeier zu Belzen, R. Tiemann, Jahrestagung der Gesellschaft für Didaktik der Chemie und Physik, Oldenburg, p. 301
  446. American Association for the Advancement of Science (2009): Benchmarks online: The Nature of Science. http://www.project2061.org/publications/bsl/online/index.php?chapter=1\. Accessed 20 August 2012
  447. D. Klahr, Exploring Science, The Mit Press, Cambridge 2002.
  448. N. Wellnitz & J. Mayer: Evaluation von Kompetenzstruktur und -niveaus zum Beobachten, Vergleichen, Ordnen und Experimentieren, Erkenntnisweg Biologiedidaktik, In: D. Krüger, A. Upmeier zu Belzen, T. Riemeier, K. Niebert (eds.) Erkenntnisweg Biologiedidaktik 7, pp. 129-144, VBio, 2008
  449. J. Arnold, N. Wellnitz & J. Mayer: Beschreibung und Messung von Beobachtungskompetenz bei Schülerinnen und Schülern der Sekundarstufe I, In: D. Krüger, A. Upmeier zu Belzen, S. Nietz (eds.) Erkenntnisweg Biologiedidaktik 8, pp. 7- 22, VBio, 2010
  450. P. Janich, M. Weingarten, Wissenschaftstheorie der Biologie, UTB, Stuttgart 1999.
  451. R. Justi, J. Gilber: The Role of Analog Models in the Understanging of the Nature of Models in Chemistry. In: P. J. Aubusson, A. G. Harrison, S. M. Ritchie (eds.) Metaphor and Analogy in Science Education, pp. 119-130, Springer, Dordrecht 2006.
  452. B. Mahr, Informatik Spektrum, 2009, DOI 10.1007/s00287-009-0340-y
  453. B. Mahr, Das Wissen im Modell, KIT-Report Nr. 150, Berlin 2004.
  454. C. J. Boulter & B. C. Buckley: Constructing a typology of models for science education. In: J. K. Gilbert, C. J. Boulter (eds.) Developing models in science education, pp. 41-57, Dordrecht, Kluwer, 2000
  455. J. Sweller, J. J. G. van Merrienboer, F. G. W. C. Paas, Educational Psychology Review, 1998, DOI: 10.1023/A:1022193728205
  456. J. Sweller, Learning and Instruction, 1994, 4, 4, 295-312
  457. A. H. Johnstone, J. Chem. Educ, 1993, DOI: 10.1021/ed070p701
  458. H. Ogawa and T. Hasegawa, Chemistry & Education, 1999, 47, 684-685. (in Japanese)
  459. H. Ogawa, Chemistry & Education, 2000, 48, 505-507. (in Japanese)
  460. A. Ikuo, Y. Yashinaga, S. Hasegawa, and H. Ogawa, Bull. Tokyo Gakugei Univ. Natur. Sci., 2007, 59, 27-35. (in Japanese)
  461. A. Ikuo, N. Enuma, S. Teratani, S. Hasegawa, T. Shishid, and H. Ogawa, Chemical Education Journal(CEJ), 2005,8, No. 2 (Serial No. 15), Reg. No. 8-10. (in Japanese)
  462. H. Ogawa, T. Chihara, and K. Taya, J. Am. Chem. Soc., 1985, 107, 1365-1369;
  463. H. Ogawa, J. Phys. Org. Chem., 1991, 4, 346-352.
  464. Ministry of Education, Culture, Sports, Science & Technology in Japan, Course of Study of High School Science, 2009.
  465. "In writing a graduation thesis," Ed. Waseda University Senior School at Honjo, 2011.
  466. American Chemical Society, "Inquiry-Based Experiment in Chemistry", Oxford University Press, Washington, D.C., 2000. ISBN 0-8412-3507-8
  467. Benchmarks for Science Literacy: Project 2061, American Association for the Advancement of science. Oxford University Press, New York, 1993, 3.
  468. Chemistry in the National Science Education Standards, American Chemical Society, Washington, DC, 1997, 19.
  469. K. P. Raghubir, Journal of Research in Science Teaching, 1979, 13-17.
  470. Chemistry in the National Science Education Standards, American Chemical Society, Washington, DC, 1997, 22-23.
  471. Haruo Ogawa, article in the book of The 4 th NICE (Network for Inter-Asian Chemistry Educators) Symposium, 2011, 4- 15;
  472. H. Fujii and H. Ogawa, Proc. Intern. Conf. EASE (East-Asian Association for Science Education), 2011, 62-68; H. Ogawa, H. Fujii, and Y. Ohashi, "Innovation in Science and Technology Education: Research, Policy, Practice", Ed Jack Holbrook et al, University Tartu, 2010, 253-256. (ISBN 978-9985-4-0607-6);
  473. H. Ogawa, H. Fujii, and M. Sumida, The Chemical Education Journal (CEJ), 13, No. 1, 13-1, (6 pages), 2009.
  474. J. Wardle, School Science Review, 2009, 90 (332), 29-30.
  475. R. A. Finke, T. B. Ward, and S. M. Smith. "Creative Cognition: Theory, Research and Applications," MIT Press, 1992.
  476. E. P. Child, Chem. Educ. Res. Pract., 2009, 10, 189-203.
  477. J. Osborne, M. Ratcliffe, H. Bartholomew, S. Collins, R. Millar and R. Duschi Towards evidence-based practice in science education 3: teaching pupils 'Ideas-about-science,' 2003, available at http://www.tlrp.org/pub/documents/no3\_miller.pdf, accessed 15 Oct. 2010.
  478. T. Jarvis, School Science Review, 2009, 90 (332), 39-46.
  479. L. Höhn and G. Harsh, School Science Review, 2009, 90 (332), 73-81.
  480. S. Longshaw, School Science Review, 2009, 90 (332), 91-94.
  481. T. Ohshima, "Rika Kyoujyu no Genri (Principle of science teaching)," Doubunkan Co., 1920, 314-330. (in Japanese).
  482. S. D. Domin, Chem. Educ. Res. Pract., 2008, 9, 291-300.
  483. Eurydice, 2011. Science Education in Europe: National Policies, Practices and Research. Brussels: Eurydice, Romanian translation. http://eacea.ec.europa.eu/education/eurydice/documents/thematic\_reports/133RO\_HI.pdf. Accesed 10 June 2012
  484. H.A. Linstone & M. Turoff (Hrsg.), The Delphi Method: Techniques and Applications, Reading, Mass. u.a: Addison- Wesley, 1975
  485. C. Bolte, A Conceptual Framework for the Enhancement of Popularity and Relevance of Science Education for Scientific Literacy, based on Stakeholders' Views by Means of a Curricular Delphi Study in Chemistry, Science Education International, 2008, 19(3), 331-350
  486. J. Osborne, J. F. Ratcliffe, M. Collins, R. Millar & R. Dusch, What "Ideas about-Science" Should Be Taught in School Science? A Dephi Study of the Expert Community, Journal of Research in Science Teaching, 2003, 40(7), 692-720
  487. C. Bolte, S. Streller, J. Holbrook, M. Rannikmae, R. Mamlok Naaman, A. Hofstein, F. Rauch, Profiles: Professional Reflection-Oriented Focus on Inquiry based Learning and Education through Science, Proceedings of the European Science Educational Research Association (ESERA), Lyon, France, 2011, (in press)
  488. C. Bolte, S. Streller, M. Rannikmae, J. Holbrook, A. Hofstein, R. Mamlok Naaman, F. Rauch, Profiles Projekt erfolgreich gestartet. In S. Unterricht. Zur Didaktik der Physik und Chemie. Probleme und Perspektiven, Műnster. Lit-Verlag, 2012, (in press)
  489. C. Bolte, S. Streller, Evaluating Student Gains in the PROFILES Project, Proceedings of the European Science Educational Research Association (ESERA), Lyon, France, 2011, (in press) Reference list
  490. Framework education programme for secondary general education, VÚP, Prague 2007
  491. Marecek A., Honza J. Chemie pro ctyrleta gymnazia 3.dil. Olomouc 2005 (Marecek A., Honza J. Chemistry for High School 3.part. Olomouc 2005)
  492. L. S. W. Pelter, A. Amico, N. Gordon, Ch. Martin, D. Sandifer, and M. W. Peter, J. Chem. Edu., 2008, 85 (1), 133
  493. F. Douglass, Taber, Rui Li, M. A. Cory, J. Chem. Edu., 2011, 88 (11), 1580
  494. Reference list
  495. European Commission: Eurostat Data Base, 2010 Waste Statistics. http://epp.eurostat.ec.europa.eu/statistics\_explained/index.php/Waste\_statistics. Accessed 15 June 2012
  496. S.Y. Kim, K.E. Irving, Science & Education, 2010, 19, 187-215.
  497. R. T. Cross, Australian Science Teachers Journal, 1990, 36, 33-38.
  498. M. P. Clough, Science & Education, 2011, 20, 701-717.
  499. R. L. Coelho, Science & Education, 2010, 19, 91-113.
  500. D. Gil-Pérez, Enseñanza de las Ciencias, 1993, 11, 197-212.
  501. M. R. Matthews, Science & Education, 1992, 1: 11-47.
  502. F. Paixão, História da Ciência na Educação em Ciência, IPCB, Castelo Branco 2011.
  503. H. E. B. Viana, P. A. Porto, Science & Education, 2010, 19, 75-90.
  504. M. Monk, J. Osborne, Science Education, 1997, 81, 405-423.
  505. A. F. Cachapuz, M. F. Paixão, School Science Review, 2005, 86, 91-94.
  506. T. Sprod, The Australian Science Teachers Journal, 1993, 39, 14-20.
  507. S. Y. Kim, K. E. Irving, Science & Education, 2010, 19, 187-215.
  508. M. Matthews, Science & Education, 1992, 1, 11-47.
  509. F. Paixão, A. Cachapuz, Química Nova na Escola, 2003, 18, 31-36.
  510. A. L. Lavoisier, Ouvres de Lavoisier, Imprimérie Impérial, Paris 1864.
  511. V. Coelho de Seabra, Elementos de Chimica, Real Oficina da Universidade, Coimbra 1788.
  512. Shakashiri, B. "Communicating Chemistry Via Demonstrations", this Conference.
  513. Cannizzaro, S. "Sunto di un corso di filosofia chimica", Genova, 1858
  514. Nassau, K. "The Physics and Chemistry of Color", 1 st ed., Wiley, 1983
  515. CnS -La Chimica nella Scuola XXXIV -3 PROCEEDINGS ICCE-ECRICE August 2012
  516. an., "A Career in Colors", URL: http://sciencegeist.net/a-career-in-colors/
  517. Murphy, K. L."Scale literacy of students in foundation-level chemistry courses", this Conference.
  518. an., "Unravelling the structure of the wool fibre and other keratins" http://www.csiropedia.csiro.au/display/CSIROpedia/Wool+fibre+structure,
  519. Palazzi, S. "Origine e metrica del colore -spunti didattici", X congresso nazionale DD-SCI, Verbania, 1996. URL: http://www.kemia.it/testipdf/ORIGINE%20E%20METRICA%20DEL%20COLORE%20web.pdf
  520. Coppola, B. P. "The Most Beautiful Theories…" Journal of Chemical Education 2007, 84, 1902-1911. URL: http://www- personal.umich.edu/~bcoppola/publications/p 1902.pdf
  521. Coppola, B. P. "Full human presence: the uncut version", http://www-personal.umich.edu/\~bcoppola/publications/42A. %20Human.pdf
  522. Coppola, B. P., "Do real work, not homework", this Conference.
  523. Planck, M., quoted in [8] All web references has been accessed in August, 2012.
  524. N. Reid, Chem. Ed. Res. Pract., 2008, 9(1), 51-9.
  525. N. Reid, J. Sci. Ed., 2009, 10(1), 43-44.
  526. N. Reid, Chem. in Action, 2010, 90, 29-44.
  527. L. Harvey and D. Green, Quality in Higher Education: Employer Satisfaction, Report, Birmingham: UK, 1980.
  528. S. Hanson and T.I. Overton, Graduate Survey, Hull: The Higher Education Academy, Physical Sciences, 2010.
  529. G. Miller, Psy. Rev., 1956, 63(2), 81-97.
  530. A.H. Johnstone and N.C. Kellet, Eur. J. Sc. Ed. 1980, 2(2), 175-81.
  531. Johnstone, A.H. and H. El-Banna, Educ. in Chem., 1986, 23(3), 80-84.
  532. Johnstone, A.H. and H. El-Banna, Stud. in Higher Ed., 1989, 14(2), 159-168.
  533. H. Hindal, N. Reid and M. Badgaish, Res. in Sc. and Tech. Ed., 2009, 27(2), 187-204.
  534. P.A. Kirschner, J. Sweller and R.E. Clark, Educ. Psy., 2006, 41(2), 75-86.
  535. E. Danili and N. Reid, Res. in Sc. and Tech. Ed., 2004, 22(2), 203-226.
  536. F. Hussein and N. Reid, Res. in Sc. and Tech. Ed., 2009, 27(2), 161-186.
  537. A.H. Johnstone, Chem. Ed. Res. Pract., 2000, 1(1), 9-15
  538. N. Reid, and E. Skryabina, Res. in Sc. and Tech. Ed., 2002, 20(1), 67-81.
  539. N. Reid, Staff and Educ. Dev. Int., 1999, 3(1), 71-84.
  540. N. Reid, Chem. Ed. Res. Pract., 2000, 1(3), 381-39.
  541. E-S Jung and N. Reid, Res. in Sc. and Tech. Ed., 2009, 27(2), 205-224.
  542. B.J. Wadsworth, Piaget's theory of cognitive development. New York: D. McKay, 1971.
  543. A.H. Johnstone, J. .Chem. Ed., 1997, 74(3), 262-268.
  544. N. Mbajiorgu and N. Reid, Factors Influencing Curriculum Development in Chemistry, Higher Education Academy, Hull, ISBN 1-903815-16-9, 2006.
  545. N. Reid, Res. in Sc. and Tech. Ed., 2009. 27(2), 131-138.
  546. N. Reid Res. in Sc. and Tech. Ed., 2009, 27(2), 245-250.
  547. G. Bonder, Purdue University department of Chemistry, http://www.chem.purdue.edu/people/faculty/PubList.asp? faculty_id=27. Accessed 19 August 2012
  548. N. Reid and M-J. Yang, Res. in Sc. and Tech. Ed., 2002, 20(1), 83-98.
  549. N. Reid and M-J. Yang, Int. J. Sc. Ed., 2002, 24(12), 1313-1332.
  550. C.A. Wood, Creative Problem Solving in Chemistry, London, Royal Society of Chemistry, ISBN 1-870343-28-X, 1993.
  551. K. Almadani, N. Reid and S. Rodrigues, Prob. in Educ. in 21st cent., 2011, 32, 9-22.
  552. A. Ambusaidi and A.H. Johnstone, Chem. Ed. Res. Pract., 2000, 1(3), 323-328.
  553. A. Ambusaidi and A.H. Johnstone, Chem. Ed. Res. Pract., 2001, 2(3), 313-327.
  554. N. Reid and L. Serumola, J. Sci. Ed., 2006, 7(1), 1-15.
  555. N. Reid and L. Serumola, J. Sci. Ed., 2007, 7(2), 88-94.
  556. F. Al-Ahmadi and N. Reid, J. Sci. Ed., 2011, 11(2), 53-59.
  557. F. Al-Ahmadi and N. Reid, J. Sci. Ed., 2012, 13(1), 18-23.
  558. J. Garratt, T.I. Overton and T. Threlfall (1999) A question of chemistry : creative problems for critical thinkers, Harlow : Longman, 1999.
  559. K. Robinson, Out of our Minds -Learning to be Creative, Chichester, Capstone Publishing Ltd, 2010.
  560. N. G. Lederman: Nature of Science: Past, Present, and Future. In: S.K. Abell, N.G. Lederman (eds.) Handbook of Research on Science Education, 2007, p. 831-879. Lawrence Erlbaum, New Jersey, London, 2007.
  561. W. B. Stanley, N. Brickhouse, N., Science Education, 2001, 85, 35-49.
  562. F. Abd-El-Khalick, N.G. Lederman, International Journal of Science Education, 2000, 22, 665-701.
  563. R. Khishfe, Journal of Research in Science Teaching, 2008, 45, 470-496.
  564. R.L. Bell, J.J. Matkins, B.M. Gansneder, Journal of Research in Science Teaching, 2011, 48, 414-436.
  565. D. Allchin, Science Education, 2011, 518-542.
  566. F. Abd-El-Khalick, Physics Education, 2002, 37, 64-68.
  567. A.F. Chalmers, What is This Thing Called Science? University of Queensland Press, Queensland, 1999.
  568. J. Bruns, Auf dem Weg zur Förderung naturwissenschaftsspezifischer Vorstellungen von zukünftigen Chemie-Lehrenden, Logos, Berlin, 2009. See also Ch. S. Reiners: Reflection on Nature of Science (NOS) Aspects by Teaching Scientific Inquiry. In: L. Menabue, G. Santoro (eds.) New Trends in Science and Technology Education, pp. 207-214, Clueb, Bologna, 2010.
  569. P. Mayring, P. Qualitative content analysis -research instrument or mode of interpretation? In: M. Kiegelmann (Ed.), The Role of the Researcher in Qualitative Psychology, pp. 139-148. Huber, Tübingen, 2002.
  570. C.E. Mortimer, Chemistry, 6 th ed., Wadsworth Publ. Co, Belmont CA, 1986, pp. 455, 498.
  571. P.W. Atkins, L. Jones, Chemistry -molecules, matter and change, 3 rd ed., W.H. Freeman & Co, New York, 1997, p. 519.
  572. M.S. Silberberg, Chemistry -the molecular nature of matter and change, 2 nd ed., McGraw-Hill, 2000, pp. 761, 823.
  573. R. Chang, Chemistry, 8 th ed., McGraw-Hill, 2005, pp. 590-591, 595.
  574. IUPAC -Quantities, units and symbols in physical chemistry, 3 rd ed., RSC Publishing, Cambridge, 2007, pp. 47, 58.
  575. A.R. Denaro, Elementary electrochemistry, 2 nd ed., Butterworths, London, 1979, pp. 56, 59-60.
  576. P.W. Atkins, Physical Chemistry, 5 th ed., Oxford University Press, Oxford, 1994, pp. 3, 230.
  577. J. Olmsted, G.M. Williams, Chemistry -the molecular science, Mosby, 1994, pp. 717-720.
  578. Equations and stoichiometry.
  579. Kinetics.
  580. Thermochemistry.
  581. The direction of spontaneus reactions.
  582. Pure substance changes phase.
  583. Acid-Base reactions.
  584. J. Attali, Pour un modèle européen d'enseignement supérieur. Report de la Commission Jacques Attali. . Ministère de l'éducation nationale, de la recherche et de la technologie. Paris 1998.
  585. E. Boyer, The Boyer comission on educating undergraduates in the research universities. Reinventing undergraduate education: a blueprint for America's research universities. Report of the Foundation for the Advancement of Teaching, Washington 1998.
  586. R. Dearing, Higher education in the learning society. Report of the National Comittée. National Committee of Inquiry into Higher Education, London 1997.
  587. C. Furió, J, Carnicer. El desarrollo profesional del profesor de ciencias mediante tutorías de grupos cooperativos. Estudio de ocho casos. Enseñanza de las ciencias, 2002, 20 (1), 47-74.
  588. V. Mellado, La formación didáctica del profesorado universitario de ciencias experimentales. Revista Interuniversitaria de Formación del Profesorado, 1999, 34 (1), 231-241.
  589. ICFES-MEN. Proyecto de evaluación de docentes del servicio público estatal. Primera etapa: reconocimiento del quehacer del docente colombiano. ICFES, Bogotá 1998.
  590. A. Head, M. Eisenberg, Project Information Literacy Progress Report: "Trunth Be Told". University of Washington, Washington 2010.
  591. Roca, M., Doctoral dissertation, Universitat Autònoma de Barcelona. Spain 2007,
  592. Rosenshine, B., Meister, C. and Chapman, S., Review of Educational Research, 1996, 66 (2), 181-221.
  593. Van der Meij, J.H., Learning and Individual Differences, 1994, 6 (2), 137-161.
  594. Flammer, A., Psychological Research, 1981, 43 (4), 407-420.
  595. Gavelek, J., Raphael, T., Metacognition, instruction and the role of questioning activities. In G. M. D.L. Forrest-Pressley, Metacognition, cognition and human performance, Vol. 2, Academic Press, Orlando: FL 1985, pp. 103-136.
  596. Chin C., Osborne, J., Studies in Science Education, 2008, 44 (1), 1-39.
  597. Chin, C., Journal of Research in Science Teaching, 2007, 44 (6), 815-843.
  598. Lawson, A., Science Teaching and Development of Thinking. Wadsworth-Thomson Learning, Belmont: CA 1995.
  599. Brookfield, 1986, cited by López & Recio, Creatividad y pensamiento crítico. Mexico: Trillas, 1998.
  600. Bachelard. G. La Formation de L'esprit Scientifique. Contribution a une psychanalyse de la connaissance objetive . Librairie Philosophique J. Vrin, Paris 1960, p. 14.
  601. Dillon, J.T., Journal of Curriculum Studies, 1988, 20 (3), 197-210.
  602. McComas, W.F. and L. Abraham: Asking More Effective Questions, http://cet.usc.edu/resources/teaching\_learning/docs/Asking\_Better\_Questions.pdf, Accessed 19 January 2012.
  603. Otero, J., Question Generation and Anomaly Detection in Texts. En J. D. D. Hacker, Handbook of Metacognition in Education, Routledge, New York: NY 2009, pp. 47-59.
  604. Otero, J., Ishiwa, K., Caldeira, H., Macias, A., Maturano, C. and Sanjose, V., 1st International Seminar on Research on Questioning. University of Aveiro, Portugal, 2004.
  605. Otero, J., Graesser, A., Cognition and Instruction , 2001, 19 (2), 143-175.
  606. Costa, J., Caldeira, H., Gallástegui, J.H. and Otero, J., Journal of Research in Science Teaching, 2000, 37 (6), 602-614.
  607. Trabasso, T., Magliano, J., Discourse Processes, 1996, 21 (3), 255-287.
  608. Graesser, A., Person, N., American Educational Research Journal, 1994, 31 (1), 104-137.
  609. Ricardo, E.C., Ciência & Ensino, 2007, vol. 1, número especial.
  610. Rioseco, M.G., Romero, R. Paideia: Revista de Eduacion, 2000, vol. 28, 35-63.
  611. lka Parchmann, Markus Luecken, International Seminar, Professional Reflections, National Science Learning Centre, York, February, 2010, 1-15.
  612. Nentwig, P. M. , Demuth, R., Parchmann, I., Gräsel, C., Ralle, B. Journal of Chemical Education, 2007, vol. 84 (9),1439-1444.
  613. Vieira T. C., Magalhães S.I.R., Revista Portuguesa de Educação, 2006, vol. 19(2), 85-110.
  614. Solbes, J., Vilches, Amparo, Enseñanza de las Ciencias , 2004, vol. 22(3), 337-348.
  615. Solbes, J.,Rios, E.,Revista Electrónica de Enseñanza de las Ciencias,2007, vol. 6(1)
  616. Hawkes, S.J.,Journal of Chemical Education , 2004, Vol. 81(1),14-15.
  617. Brasil, Ministério da Educação, Secretaria de Educação Média e Tecnológica. Parâmetros Curriculares Nacionais: Ensino Médio, 2011. Reference List
  618. J. G.Wissema, Towards the Third University Generation: Managing the University in Transition, Edward Elgar Publishing 2009.
  619. M.Lancaster, Green Chemistry: an Introductory Text, Royal Society of Chemistry, New York 2002.
  620. P.Tundo, A.Peroso, F.Zecchini, Methods and Reagents for Green Chemistry, Wiley, New Jersey 2007.
  621. P. Tundo, V. Esposito, Green Chemical Reactions, Springer 2008.
  622. Euroscope, 2010, 2, XIII
  623. D. Grinshpan etc., Water: Chemistry and Ecology, 2011, 1, 52-60
  624. Clark, R. E. & Craik, T. G.Interactive multimedia learning environments. NATO ASI Series F: Computer and System Sciences, 93, Springer, Berlin, 1992.
  625. Dulger, İ. Case Study on Turkey Rapid Coverage for Compulsory Education Program. Conference on Scaling Up Poverty Reduction Shanghai, China May 25-27 2004.
  626. Grob, A. The Virtual Chemistry Lab For Reactions At Surfaces: Is It Possible? Will It Be Usefull, Surface Science, 500, 347- 367, 2002.
  627. Jeschke, S., Richter, T. & Zorn, E. Virtual Labs in Mathematics and Natural Sciences, Online Educa Berlin. http://www.ibi.tu-berlin.de/diskurs/veranst/online\_educa/oeb\_04/Zorn%20TU.pdf Accessed 10 December 2010.
  628. Koneru, I. ADDIE: Designing Web-enabled Information Literacy Instructional Modules. DESIDOC Journal of Library & Information Technology, Vol 30, No3, May 2010, pp. 23-34.
  629. Tatlı, Z. ve Ayas, A. Development Process Of Vırtual Chemıstry Laboratory. 5th International Computer & Instructional Technologies Symposium, 22-24 September 2011 Fırat University, Elazığ-Turkey.
  630. References
  631. K. Höner, Mathematisierungen im Chemieunterricht -ein Motivationshemmnis? In: ZfdN, 1996, 2 (2), pp. 51 -70
  632. F. Harisch, Mehr rechnen im Chemieunterricht! In: NiU Physik / Chemie 1979, 27 (2), pp. 57-60
  633. P. Borneleit, R. Danckwerts, H.-W. Henn, H.-G. Weigand, Expertise zum Mathematikunterricht in der gymnasialen Oberstufe. In: H.-E. Tenorth (Hrsg.): Kerncurriculum Oberstufe. -Weinheim: Beltz, 2001, pp. 26 -53
  634. U. Beck, S. Markic, I. Eilks, Modellierungsaufgaben im Chemieunterricht. In: PdN Chemie in der Schule 2010, 59 (6), pp. 5 -7
  635. M. Potgieter, A. Harding, J. Engelbrecht, Transfer of algebraic and graphical thinking between Mathematics and Chemistry, Journal of Research in Science Teaching, 2008, 45 (2), pp. 197-218.
  636. A. Büchter, T. Leuders, Mathematikaufgaben selbst entwickeln. Lernen fördern -Leistung überprüfen, Berlin: Cornelsen Scriptor 2005
  637. R. Borromeo Ferri, Modelling problems from a cognitive perspective. In C. Haines, P., et al. (eds) Mathematical Modelling -Education, Engineering and Economics, Chichester: Horwood Publishing, 2007, pp. 260-270.
  638. I. Schmidt, D.-S. Di Fuccia, Mathematical Modelling in Chemistry Lessons, in Paul van Kampen, Brien Nolan, Odilla Finlayson, ed.(s), Eilish McLoughlin, chair ESTABLISH |SMEC 2012 Teaching at the heart of Learning, Dublin City University, Ireland, 7-9th June 2012, pp. 16-20.
  639. F. Schmidt-Weigand, M. Hänze, Incremental support in learning with worked examples: A quasi-experimental field study. Paper presented at the 13 th bi-annual meeting of the European Association of Research on Learning and Instruction, Amsterdam, the Netherlands, 2009
  640. H. Suhrweier, Lernbehinderte Kinder und Jugendliche -Kennzeichnung der Population. In: G. Siepmann (eds.)
  641. Lernbehinderung, pp. 289-320. Ullstein Mosby, Berlin 1993.
  642. S. Easterbrooks, S. Baker, Language Learning in children who are deaf and hard of hearing, Allyn & Bacon, Boston 2002.
  643. A. Leonhardt, Einführung in die hörgeschädigten Pädagogik, Reinhardt-Verlag, Munic, Basel 2002.
  644. P. Mayring, Qualitative Inhaltsanalyse. Grundlagen und Techniken, Beltz, Weinheim 2003
  645. B. Glaser, A. Strauss, Grounded Theory. Strategien qualitativer Forschung, Hans Huber, Bern 1998.
  646. B. Schmitt-Sody, A. Kometz, Experimentieren mit Förderschulkindern. In: Sascha Bernholt (eds.) Konzepte fachdidaktischer Strukturierung für den Unterricht. Gesellschaft für Didaktik der Chemie und Physik Jahrestagung in Oldenburg 2012, page 131-133. Lit Verlag, Berlin 2012.
  647. B. Schmitt-Sody, A. Kometz, NESSI-Transfer: Experimentieren mit hörgeschädigten Kindern im Schülerlabor, pp. 78-82
  648. Hörpäd, 2, 2012.
  649. D. C. Edelson: Realising Authentic Science Learning through the Adaptation of Scientific Practice. In B. J. Fraser, K. G. Tobin (eds.) International Handbook of Science Education Vol.1, pp. 317-332. Kluwer, Dordrecht, (1998)
  650. W. F. McComas (ed.), The Nature of Science in Science Education: Rationales and Strategies, Kluwer, Dordrecht 1998.
  651. J. Schummer: Philosophy of Chemistry. In: F. Allhoff (ed.) Philosophies of the Sciences: A Guide, pp. 163-183. Wiley- Blackwell, Malden, (2010)
  652. D. D. Minner, A. J. Levy and J. Century, J. Res. Sci. Teach., 2010, 47(4), 474
  653. OECD, The PISA 2003 Assessment Framework: Mathematics, Reading, Science and Problem Solving Knowledge and Skills, OECD, Paris 2004.
  654. Kultusministerkonferenz, Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss (Jahrgangsstufe 10): Beschluss vom 16.12.2004, Luchterhand, Neuwied 2005.
  655. H. Schecker, I. Parchmann: Standards and competence models: The German situation. In: D. J. Waddington (ed.) Standards in science education: Making it comparable, pp. 147-164. Waxmann, Münster, (2007)
  656. N. G. Lederman, J. Res. Sci. Teach., 1992, 29(4), 331
  657. R. Driver, J. Leach, R. Millar, P. Scott, Young people's images of science, Open University Press, Buckingham 1996.
  658. P. Mayring: Qualitative content analysis -research instrument or mode of interpretation? In: M. Kiegelmann (ed.) The role of the researcher in qualitative psychology, pp. 139-148. Huber-Verlag, Tübingen, (2002).
  659. C. J. Wenning, J. Phys. Teach. Educ. On., 2006, 3(3), 3
  660. B. Martin, H. Kass, and W. Brouwer, Sc. Ed., 1990, 74(5), 541
  661. J. Bruns, Auf dem Weg zur Förderung naturwissenschaftsspezifischer Vorstellungen von zukünftigen Chemie-Lehrenden: Chancen und Grenzen eines kombinierten theoretisch-expliziten und praktisch-reflektierten Ansatzes, Logos, Berlin 2009. See also: Ch. S. Reiners: Reflection on Nature of Science (NOS) Aspects of Teaching Scientific Inquiry. In: L. Menabue, G. Santoro (eds.) New Trends in Science and Technology Education, pp. 207-214, Clueb, Bologna, (2010)
  662. T. Corcoran, F.A. Mosher, A. Rogat, Learning progressions in science: An evidence-based approach to reform. Consortium for Policy Research in Education Report #RR-63. Consortium for Policy Research in Education, Philadelphia 2009.
  663. National Research Council (NRC), Taking science to school: Learning and teaching science in grades K-8. Duschl, R. A., Schweingruber, H. A., & Shouse, A, (Eds.). National Academies Press, Washington, D.C., 2007.
  664. C. Smith, M. Wiser, C. Anderson, J. Krajcik, Measurement, 2006, 14, 1.
  665. S. Stevens, C. Delgado, J. Krajcik, (2010). J Res. Sci. Teach., 2010, 47, 687.
  666. C. Smith, S. Carey, M. Wiser, Cognition, 1985, 21, 177.
  667. L. Mohan, J. Chen, C.W. Anderson, J. Res. Sci. Teach., 2009 46, 675.
  668. A. Alonzo, J.T. Steedle, Sci. Educ., 2008, 93, 389.
  669. R.G. Duncan, A. Rogat, A. Yarden, J Res. Sci. Teach., 2009 46, 655.
  670. R. Lehrer, L. Schauble, Sci. Educ., 2012, 96, 701.
  671. L. Berland, L. McNeill, Sci. Educ., 2010, 94, 765.
  672. T. Sikorski, D. Hammer, Learning in the Disciplines: Proceedings of the 9th International Conference of the Learning Sciences, 2010, 1032.
  673. V. Talanquer. J. Chem. Ed., 2006, 83, 811.
  674. D.W. North, IEEE Transactions on Systems Science and Cybernetics, 1968, SSC-4, 200.
  675. P. Slovic, Saúde Soc. São Paulo, 2010, 19, 731.
  676. D. Kahan, H. Jenkins-Smith, D. Braman, J. Risk Res., 2011, 14, 147.
  677. T.D. Sadler, L.A. Donnelly, Int. J. Sci. Educ., 2006, 28, 1463.
  678. T.D. Sadler, S. Fowler, Sci. Educ., 2006, 90, 986.
  679. M.Q. Patton, Qualitative Research and Evaluation Methods, 3 rd ed. Sage Publications, Thousand Oaks, CA 2002.
  680. M.L. Finucane, A. Alhakami, P. Slovic, S.M. Johnson, J. Behav. Decis. Making, 2000, 13, 1.
  681. P.T. Anastas, J.C. Warner, J. C.; Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998.
  682. Arendale, D., Martin, D. C. (1997). Review of research concerning the effectiveness of Supplemental Instruction from the University of Missouri-Kansas City and other institutions. Kansas City, MO: The University of Missouri-Kansas City. (ERIC Document Reproduction Service No. ED 370 502)
  683. Hurley, M., Jacobs, G., Gilbert, M. New Directions for Teaching and Learning, 2006, DOI: 10.1002/tl
  684. Epstein, R. Skinner for the Classroom: Selected Papers, Champaign, Ill., Research Press, 1982.
  685. Vygotsky, L. S. Thought and Language. (A. Kozulin, trans.) Cambridge: Massachusetts Institute of Technology Press, 1986.
  686. International Center for Supplemental Instruction. (2007). Supplemental Instruction (SI) National Data Fall 2003-Fall 2006, University of Missouri-Kansas City. Retrieved from http://www.umkc.edu/cad/SI/ publications.shtml
  687. R. A. Blanc, L. DeBuhr, D. C. Martin, Journal of Higher Education, 1983, 54(1), 80-89
  688. T. J. Bowles, J. Jones, Journal of College Student Retention, 2003/2004, 5(2), 235-243.
  689. B. Hingant B., V. Albe, Nanosciences and nanotechnologies learning and teaching in secondary education: a review of literature. Studies in Science Education, 2010, 46, 121-152
  690. M.C. Roco, Nanoparticles and nanotechnology research. Journal of Nanoparticle Research, 1999, 1, 1-6.
  691. S. Stevens, L. Sutherland, J. Krajcik, The 'big ideas' of nanoscale science and engineering. Arlington, VA: National Science Teachers Association press, 2009
  692. N. Healy, Why Nano Education? Journal of Nano Education, 2009, 1, 6-7.
  693. M. Komorek, R. Duit, The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems International Journal of Science Education, 2004, 26, 619-633
  694. A. Taylor, G. Jones, Proportional Reasoning Ability and Concepts of Scale: Surface area to volume relationships in science, International Journal of Science Education, 2009, 31, 1231-1247
  695. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics. New York: Wiley, 2001
  696. K. Dimitriadi, K. Halkia. Secondary Students' Understanding of Basic Ideas of Special Relativity. International Journal of Science Education, 2012, DOI:10.1080/09500693.2012.705048
  697. V. Talanquer, Students' Predictions About the Sensory Properties of Chemical Compounds: Additive Versus Emergent Frameworks, Science Education, 2008, 92, 96-114
  698. S.Y. Stevens, C. Delgado, J.S. Krajcik, Developing a Hypothetical Multi-Dimensional Learning Progression for the Nature of Matter, Journal of Research in Science Teaching, 2010, 47, 687-715
  699. References M.Cracolice, J. Deming, B. Ehlert, Journal of Chemical Education, 2008, Vol. 85, N° 6, June, p. 873-878.
  700. A. Johnstone, Macro -and Micro -Chemistry. School Science Review, 1982, 64, 377 -379.
  701. A. Johnstone, The development of Chemistry teaching. Journal of Chemical Education, 1993 70 (9), 701-705.
  702. Pólya G., How to solve it -A new aspect of mathematical method, 1945, Princeton University Press.
  703. Kaisalo L., Studies on Synthesis and Conformationally Controlled Reactions of Simple 12-15-Membered Macrolides, 2002, Academic Dissertation, University of Helsinki Faculty of Science, Helsinki. Reference list
  704. M. Donaldson, Children's Minds, Biddles Ltd., Guilford, Great Britain, 1978, p.76
  705. H-D. Barke, G. Harsh, S. Schmid, Essentials of Chemical Education Springer-Verlag, Berlin-Heidelberg 2012, p. 81, 202
  706. L. S. Vygotsky, The Collected Works of L. S.Vygotsky, Vol I. Problems of general psychology, R. W. Rieber and A. S. Carton (Eds.). New York: Intern. Publishers, 1987, p. 177
  707. Resolutions adopted by the General Conference on Weights and Measures (24 th meeting) Paris, 17-21 October 2011, www.bipm.org/utils/common/pdf/24\_CGPM\_Resolutions.pdf, Accessed 07 August 2012 Reference list
  708. J. N. Spencer, New Directions in Teaching Chemistry:A Philosophical and Pedagogical Basis. J. Chem. Educ. 1999, 76, 566-569
  709. C. Bolte, A. Hofstein, J. Holbrook, M. Rannikmae, R. Mamlok Naaman, F. Rauch, S. Streller, PROFILES -Professional Reflection-Oriented Focus on Inquiry-based Learning and Education through Science, paper presented at the ESERA conference, Lyon, France September 2011
  710. J. J. Farrell; R. S. Moog, and J. N. Spencer, A Guided Inquiry General Chemistry Course . Chem. Educ. 1999, 76, p. 570- 574
  711. C. R. Landis; E. Jr. Peace; M. A. Scharberg; S. Branz; J. N. Spencer; R. Ricci; S. A. Zumdahl; D. Shaw. The New Traditions Consortium: Shifting from a Faculty-Centered Paradigm to a Student-Centered Paradigm, J. Chem. Educ. 1998, 75, 741-744
  712. H-D. Barke, G. Harsh, S. Schmid, Essentials of Chemical Education Springer-Verlag, Berlin-Heidelberg 2012, p. 8
  713. L. S. Vygotsky, Thought and Language, revised Edition by A. Kozulin, Massachusetts Institute of Technology, Baskerville (MA). 1986, p. 219
  714. Mahn, H. (2012) Vygotsky's Analysis of Children's Meaning Making Processes, Downloadable from International Journal of Educational Psychology: Hipatia Press, www.hipatiapress.info/hpjournals/index.php/ijep/article/view/289 (Accessed 12/08/2012)
  715. A. Woolfolk. Educational Psychology (9th ed). Allyn and Bacon, Boston, 2004
  716. L. S. Vygotsky, The Collected Works of L. S. Vygotsky, Vol 4. The History of the Development of the Higher Mental Functions, R. W. Rieber Editor, Plenum Press, New York, 1997 chap. 5, p. 104-107
  717. J. Bruner, ActualMinds, Possible Worlds. Harvard University Press, Cambridge, Massachusetts and London, England, 1988, p. 76
  718. H.-D. Barke et. Al, Essentials of Chemical Education, Springer Verlag, Berlin Heidelberg, 2012 p. 11, 18
  719. A. Tifi, Dismissing the Mole Concept, Submitted to Chimica nella Scuola for the proceedings of the 22 nd International Conference on Chemistry Education, Roma 2012
  720. ITIS Divini, Classe 1E-2E biennio 2012-13 Chimica, https://sites.google.com/a/divini.org/classe-1e-chimica/, accessed 17 August 2012
  721. Remotely Controlled Laboratories -RCLs: http://rcl.physik.uni-kl.de/, accessed 17 th August 2012
  722. ITIS Divini, Classe 1E-2E biennio 2012-13 Chimica, http://sites.google.com/a/divini.org/classe-1e-chimica/home/attivita/12marzo2012lesperimentodirutherford103annidopo
  723. L. S. Vygotsky, The Collected Works of L. S.Vygotsky, Vol I. Problems of general psychology, R. W. Rieber and A. S. Carton (Eds.). New York: Intern. Publishers, 1987, p. 177
  724. References
  725. S. K. Gandhi, VLSI fabrication Principles Silicon and Gallium Asenide, Wiley, 1994
  726. Robert Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall,2004
  727. Yogesh B. Gianchandani, Osamu Tabata, Hans Zappe, Comprehensive Microsystems, Elsevier, 2008
  728. James M. Bustillo, Proceedingsof theIEEE, Vol. 86, No. 8, August 1998
  729. Gregory T. A. Kovacs, Proceedings of the IEEE, Vol. 86, No. 8, August 1998
  730. Chang Liu, Foundations of MEMS, Prentice Hall,2011
  731. Chang Liu, Foundations of MEMS, Prentice Hall, 2011.
  732. D. S. Domin, J. Chem. Educ., 1999, 76, 543.
  733. A. Hofstein, V. N. Lunetta, Sc. Educ., 2004, 88, 28.
  734. D. D. Minner, A. J. Levy, J. Century, J. Res. Sc. Teach., 2009, 1,1.
  735. K. Marton, R. Säljö, Brit. J. Educ. Psyc., 1976, 46, 4.
  736. J. B. Biggs, K. F. Collis, Evaluating the quality of learning: the SOLO taxonomy, Academic Press: New York 1982.
  737. J. B. Biggs, Students approaches to learning and studying, Australian Council for Educational Research: Melbourne 1999.
  738. E. Abrams, S. A. Southerland, C. Evans: An Introduction to Inquiry. In E. Abrams, S. A. Southerland, P. Silva (eds.) Inquiry in the classroom: Realities and opportunities, pp. i -xii, CT: Information Age Publishing, Greenwich, (2007)
  739. P. A. Kirschner, J. Sweller, R. E. Clark, Educ. psychologist, 2006, 41, 75.
  740. D. Edelson, J. Learn. Sc., 2002, 11, 105.
  741. K. Juuti, J. Lavonen, NorDiNa, 2006, 4, 54.
  742. J. Dillon: Managing science teachers' development. In R. Millar, J. Leach, J. Osborne (eds.) Improving science education. The contribution of research, pp. 94 -109, Open University Press, Buckingham, (2000)
  743. P. Kansanen, M. Meri: The didactic relation in the teaching-studying-learning process. In B. Hudson, F. Buchberger, P. Kansanen, H. Steel (eds.) Didaktik/Fachdidaktik as science(-s) of the teaching profession. TNTEE Publications, 1999, 2, 107
  744. P. Kansanen: Research-based teacher education. In R. Jakku-Sihvonen, H. Niemi (eds.) Education as a societal contributor, pp.131 -146, Peter Lang: Frankfurt am Main, (2007)
  745. D. Clarke, H. Hollingsworth, Teaching and Teacher Educ., 2002, 18, 947
  746. References
  747. A.Ferrari, R.Cachia, and Y.Punie, Innovation and Creativity in Education and Training in the EU Member States: Fostering Creative Learning and Supporting Innovative Teaching, 2009. http://ftp.jrc.es/EURdoc/JRC52374\_TN.pdf
  748. J. A. Plucker, What's in a Name? Young Adolescents' Implicit Conceptions of Invention, Science Education, 2002, 86,149, DOI 10.1002/sce.10011
  749. H. Bartholomew, J. Osborne and M.Ratcliffe, Teaching Students ''Ideas-About-Science": Five Dimensions of Effective Practice, Science Education, 2004, 88, 655
  750. L.Barrow, Encouraging Creativity with Scientific Inquiry, Creative Education, 2010, 1, 1
  751. S. Hope, Creativity, Content, and Policy, SYMPOSIUM: TEACHING CREATIVITY, Arts Education Policy Review, 2010, 111, 2, 39
  752. R. J Sternberg, W. M. Williams, How to Develop Student Creativity, Association for Supervision & Curriculum Development, Alexandria, VA, USA 1996.
  753. J.Feldhusen,Creativity: the knowledge base and children, High Ability Studies, 2002, 13, 2, 179
  754. A.L.Schmidt, Creativity in Science: Tensions between Perception and Practice, Creative Education, 2011, 2, 5, 435
  755. D. Krnel, R. Watson and S. A. Glazar, The development of the concept of 'matter': a cross-age study of how children describe materials. International Journal of Science Education, 2005, 27, 3, p. 367-383.
  756. J. Piaget and B. Inhelder, The child's construction of quantities, Routledge, London, 1974.
  757. A. Métioui and L. Trudel, Preservice elementary teachers' conceptions of matter concepts: the case of physical transformations. In 10 th European Conference on Research in Chemistry Education: Book of Abstracts, ECRICE, Pedagogical University of Krakow, Krakow, July 2010, p. 177-178.
  758. A. Métioui and L. Trudel, Quebec Secondary Physics Teachers and the Modern Science: The Case of the Concept of Matter. The International Journal of Science in Society, 2012, 3, 1, p. 177-190.
  759. A. Laugier and A. Dumon, The epistemological and didactical obstacles in the building of chemical element concept. Didaskalia, 2003, 22, p. 69-97.
  760. Michel Rocard et al., Science Education now: a renewed pedagogy for the future of Europe, European Communities. 2007.
  761. Bogner, F.: Homepage of Pathway project. http://www.pathway-project.eu. Accessed 10 July 2012.
  762. Wegner, N, Tiemann, R.., The Pathway To Inquiry Based-Science Teaching. Jahrestagung der Gesellschaft der Didaktik der Chemie und Physik. Bd. 32, Oldenburg, September 2011, p. 604-606
  763. KMK, Educational Standards in Chemistry at the End of grade 10, Berlin, 2004 [KMK 2004b (Hrsg.): Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. Berlin 2004]
  764. Siebert, E., & McIntosh,W., College pathways to the science education standards, VA: NSTA Press, Arlington 2001.
  765. American Association for the Advancement of Science (AAAS), Project 2061: Science for all Americans, Oxford University Press, New York 1990.
  766. Anderson, R., Reforming Science Teaching: What research says about inquiry, Journal of Science Teacher Education, 2002, 13(1), 1-12.
  767. Barrow, L. H., A Brief History of Inquiry: From Dewey to Standards. Journal of Science Teacher Education, 2006, 17(3), 265-278.
  768. Minner, D.D., Levy, A. J., & Century, J., Inquiry-based science instruction -what is it and does it matter? Results from a research synthesis years 1984 to 2002, Journal of Research in Science Teaching, 2009, 47, 474-496.
  769. American Association for the Advancement of Science, Benchmarks for Science Literacy, Oxford University Press, New York 1993, p. 9.
  770. National Research Council, Inquiry and the National Science Education Standards: A guide for teaching and learning, The National Research Council, Washington D.C. 2000, p.25.
  771. Bybee, R. W.: Teaching science as inquiry. In: J. Minstrell & E. H. van Zee (Eds.), Inquiry into inquiry learning and teaching in science, pp. 20-46. American Association for the Advancement of Science, Washington 2000.
  772. Buck, L. B., Bretz, S. L., & Towns, M. H., Characterizing the Level of Inquiry in the Undergraduate Laboratory, Journal of College Science Teaching, 2008, XXXVIII(1), 52-58.
  773. Schwab, J.J.: The teaching of science as enquiry. In: J.J. Schwab and P.F. Brandwein (eds.) The teaching of science, 3-103, MA: Harvard University Press Cambridge, 1962.
  774. Herron, M.D., The nature of scientific enquiry, School Review, 1971, 79, 171-212.
  775. Hmelo-Silver, C., Duncan, R., & Chinn, C.A. Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006), Educational Psychologist, 2007, 42(2), 99-107.
  776. Garet, M., Porter, A., Desimone, L., Birman, B., & Yoon, K. S. What makes professional development effective? Results for a national sample of teachers, American Educational Research Journal, 2001, 38(4), 915-945.
  777. Sherman, R., Safford-Ramus, K., Hector-Mason, A., Condelli, L., Olinger, A., & Jani, N. An environmental scan of adult numeracy professional development initiatives and practices, American Institutes for Research, Washington, DC 2006.
  778. Guskey, T. R., Evaluating professional development, CA: Corwin, Thousand Oaks 2000. Literature Cited
  779. Solow, M., J. Chem. Educ., 2004, 81, 1172-1174.
  780. Byrd, H., O'Donnell, S. E., J. Chem. Educ. 2003, 80, 174-176.
  781. Pfennig, B. W., Schaefer, A. K., J. Chem. Educ., 2011, 88, 970-974.
  782. Liotta, L. J., James-Pederson, M. J. Chem. Educ., 2008, 85, 832-833.
  783. Klotz, E., Doyle, R., Gross, E., Mattson, B., J. Chem. Educ., 2011, 88, 637-639.
  784. Skoog, D. A., Holler, F. J., Crouch, S. R. Principles of Instrumental Analysis, 6 th ed., Thomson Higher Education, CA, 2007.
  785. Hofstein, A., Lunetta, V. N. Sci. Ed., 2004, 88, 28-54.
  786. Ealy, J. B., Hermanson, J., J. Sci Ed. and Tech., 2006, 15, 59-68.
  787. Bobich, J. A. J. Chem. Educ., 2008, 85, 234-236.
  788. Poock, J. R., Burke, K. A., Greenbowe T. J., Hand, B. M. J. Chem. Educ., 2007, 84, 1371-1378.
  789. Acree, W. E. Jr. Modern General Chemistry Laboratory, Eagle Images: Denton, TX, 2011.
  790. MacNeil, J., Gess, S., Gray, M., McGuirk, M., McMullen, S. J. Chem. Educ. 2012, 114-116.
  791. Suits, J. P., Hypolite, K. L. Spectroscopy Letters 2004, 37, 245-262.
  792. Hirayama, S., Steer, R. P. J. Chem. Educ., 2010, 87, 1344-1347.
  793. Wilson, A., Tian, A., Chou, V., Quay, A. N., Acree, W. E. Jr., Abraham, M. H. Physics and Chemistry of Liquids, An International Journal, 2012, 50, 324-335.
  794. Deng, T., Acree, W. E. Jr. J. Chem. Educ., 1999, 76, 1555-1556.
  795. Weiguo Pang, Self-directed learning: the principle and strategy of learning and teaching, East China Normal University Publishing House, 2003, 2-6
  796. A. Yoshida, IDE Gendai no KotoKyouiku, 2002, 440,22
  797. K. Endo, Journal of the educational application of information and communication technologies,2011,14(1),11-15
  798. T. Yasuoka, Ritsumeikan Higher Educational Studies, 2-10, 10,203-216
  799. U. Heublein, C. Hutzsch, J. Schreiber, D. Sommer, G. Besuch, HIS GmbH Hannover 2010.
  800. U. Heublein, H. Spangenberg, D. Sommer, HIS GmbH Hannover 2003.
  801. H. Gerdes, B. Mallinckrodt, J. Counsel. Develop., 1994, 72, 281.
  802. L. Ulriksen, L. Møller Madsen, H. Holmegaard, Stud. Sci. Educ., 2010, 46, 209.
  803. M. J. Legg, J. C. Legg, T. J. Greenbowe, J. Chem. Educ., 2001, 78, 1117.
  804. C. McFate, J. Olmsted, J. Chem. Educ., 1999, 76, 562.
  805. S. R. Powers, Sch. Sci. Math., 1921, 21, 366.
  806. U. Schiefele, A. Krapp, A. Winteler: Interest as a Predictor of Academic Achievement: A Meta- Analysis of Research. In: K. A. Renninger, S. Hidi & A. Krapp (eds.) The Role of Interest in Learning and Development, pp. 183-212. LEA , Hillsdale [u.a.], 1992.
  807. W. Schneider, J. Körkel, F. E. Weinert: Expert Knowledge, General Abilities, and Text Processing. In: W. Schneider, F. E. Weinert (eds.) Interactions among aptitudes, strategies, and knowledge in cognitive performance, pp. 235-251. Springer: New York, 1990.
  808. C. Heine, K. Briedis, H.-J. Didi, K. Haase, G. Trost, HIS GmbH Hannover 2006.
  809. A. Gold, E. Souvignier, Z. Entw.-psychol. Pädag. Psychol., 2005, 37, 214.
  810. F. Fellenberg, B. Hannover, Z. Theorie Praxis erzieh.-wiss. Forsch., 2006, 20, 381.
  811. H. Giesen, A. Gold, A. Hummer, R. Jansen, Prognose des Studienerfolgs. Ergebnisse aus Längsschnittuntersuchungen. Institut für Pädagogische Psychologie, Frankfurt a. M. 1986.
  812. A. Krapp: Interesse und Studium. In: H. Gruber & A. Renkl (eds.) Wege zum Können: Determinanten des Kompetenzerwerbs, pp. 45-58. Verlag Hans Huber, Bern, 1997.
  813. H. Moosbrugger, J. Hartig, Zur Bedeutung von individuellen und institutionellen Studienbedingungen für die vergleichende Evaluation der Lehre. In: U. Engel (eds.), Hochschul-Ranking, pp. 49-60. Campus-Verlag, Frankfurt [u.a.], 2001.
  814. U. Preuss-Lausitz, I. N. Sommerkorn, Z. Erzieh. Gesell., 1968, 8, 434.
  815. O. Wilhelm, U. Schroeders, S. Schipolowski, BEFKI. Berliner Test zur Erfassung fluider und kristalliner Intelligenz [Berlin test of fluid and crystallized intelligence]. Unpublished manuscript, 2009.
  816. U. Schiefele, A. Krapp, K. Wild, A. Winteler, Diagnostica, 1993, 39, 335.
  817. Khanfour-Armalé, R. & Le Maréchal, J.-F. (2009). Teachers' activities for structuring students' knowledge after chemistry laboratory work. ESERA conference August 31st -September 4th at Istanbul, Turkey.
  818. Le Maréchal J.-F., Khanfour-Armalé R.et Elbilani, R. (in progress). Réaction chimique : modélisation, simulation et bilan de matière, in Production et utilisation de séquences d'enseignement scientifique pour les jeunes de 11 à 18 ans, C. BUTY & E. Mortimer Eds.
  819. Minstrell J. (1992). Facets of students' knowledge and relevant instruction. In Duit Goldberg, F., Niedderer H. (Ed.), Research in physics learning: Theoretical issues and empirical studies, Kiel: IPN. p. 110-128.
  820. Nakhleh M.-B. (1992). Why some Students Don't Learn Chemistry. Chemical misconceptions. Journal of Chemical Education, vol.69, p.191-196.
  821. Stavridou H. & Solomonidou C. (2000). Représentations et conceptions des élèves grecs par rapport au concept d'équilibre chimique. Didaskalia, vol.16, p.107-134.
  822. Taber K.-S. (1998). An alternative conceptual framework from chemistry education, International Journal of Science Education, 20, 597-608.

From" ANIMAL" electricity to" METALLIC" electricity and the beginning of lectrochemistry: The didactical view

From high school to University, students have always faced problems understanding the functioning of an electrochemical cell. In this article we will show that many of these encountered difficulties have been identified by scientists during the development of electrochemistry. Therefore, we will demonstrate how Volta, who rejected the idea of "animal" electricity as was illustrated by Galvani, postulated the existence of "metallic" electricity. Meanwhile, there was the emergence of a new theory, among others, initiated, by Faraday: The electrochemistry. Its development raised several controversial discussions among researchers and several conceptual difficulties will have been overcome as well.

Debating the Nature of Voltaic Electricity

2014

The invention of Volta’s pile started a long lasting controversy on the nature of voltaic electricity, the overview of which is provided by Helge Kragh in volume 1 of Nuova Voltiana. 1 In particular, he indicates that the controversy subsided in the 1840s and rekindled in the 1880s with a new focus on the nature of contact potential. This change of subject implies that it may be possible, if not necessary, to discuss separately the earlier period, when the controversy still revolved around the original question: does the electricity produced in a voltaic circuit originate from the mutual contact of two different metals or from chemical reactions? Yet, even within this earlier period, the amount of material available and the number of relevant issues to be addressed preclude a comprehensive coverage within the space limitation of this paper. Thus, I will bring up only a few questions, illustrating them by selected examples. The focus will be on interaction between theory and experime...

Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology

Trends in Neurosciences, 1997

Luigi Galvani and his famous experiments on frogs carried out in the second half of the 18th century belong more to legend than to the history of science. Galvani not only laid the foundations of a new science, electrophysiology, but also opened the way for the invention of the electric battery, and thus for the development of the physical investigations of electricity. However, in spite of the widespread celebration of his work,Galvani's scientific endeavours have been largely misrepresented in the history of science.The scholar of Bologna has a stereotyped image as an 'occasional' scientist, who started his studies by chance, largely ignored the scientific theories of his time and wandered aimlessly in mental elaborations until the physicist of Pavia, Alessandro Volta, entered the field, correctly interpreted Galvani's results and eventually developed the electric battery. With the present understanding of electrical phenomena in excitable membranes, it is now time to reconsider the real matter raised by Galvani's discoveries and by his hypothesis of an intrinsic 'animal electricity', and to make a clearer evaluation of a revolutionary phase of scientific progress.

Alexander von Humboldt: Galvanism, Animal Electricity, and Self- Experimentation Part 2: The Electric Eel, Animal Electricity, and Later Years

Journal of the History of the Neurosciences 22/4, 2013

After extensive experimentation during the 1790s, Alexander von Humboldt remained skeptical about "animal electricity" (and metallic electricity), writing instead about an ill-defined galvanic force. With his worldview and wishing to learn more, he studied electric eels in South America just as the new century began, again using his body as a scientific instrument in many of his experiments. As had been the case in the past and for many of the same reasons, some of his findings with the electric eel (and soon after, Italian torpedoes) seemed to argue against biological electricity. But he no longer used galvanic terminology when describing his electric fish experiments. The fact that he now wrote about animal electricity rather than a different "galvanic" force owed much to Alessandro Volta, who had come forth with his "pile" (battery) for multiplying the physical and perceptible effects of otherwise weak electricity in 1800, while Humboldt was deep in South America. Humboldt probably read about and saw voltaic batteries in the United States in 1804, but the time he spent with Volta in 1805 was probably more significant in his conversion from a galvanic to an electrical framework for understanding nerve and muscle physiology. Although he did not continue his animal electricity research program after this time, Humboldt retained his worldview of a unified nature and continued to believe in intrinsic animal electricity. He also served as a patron to some of the most important figures in the new field of electrophysiology (e.g., Hermann Helmholtz and Emil du Bois-Reymond), helping to take the research that he had participated in to the next level.

Electricity and Life. Volta's Path to the Battery

Historical Studies in the Physical and Biological Sciences, 1990

This paper offers a reconstruction of some three years of Alessandro Volta's investigation that culminated in his epoch-making discovery of the electric battery late in 1799. Among the materials used are labora tory notebooks and unpublished writings, including drafts of ...

The electric vocabulary

Physics Education, 2011

Since the 1600s, the developments in the understanding of electrical phenomena have frequently altered the models and metaphors used by physicists to describe and explain their experiments. However, to this day, certain relics of past theories still drench the vocabulary of the subject, serving as distracting fog for future students. This article attempts, through historical illumination, to shine through the mist of electrostatic terminology and offer a clearer view of the classical model of electricity. Thales (624BC-546BC) William Gilbert (1544-1603) and Sir Thomas Browne (1605-82) Nature had to wait around 2200 years before any further investigation was made into amber or lodestone. In 1600, the English physicist