Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus (original) (raw)
Abstract
Methionine aminopeptidases (MetAPs) represent a unique class of protease that is capable of the hydrolytic removal of an N-terminal methionine residue from nascent polypeptide chains. MetAPs are physiologically important enzymes; hence, there is considerable interest in developing inhibitors that can be used as anti-angiogenic and antimicrobial agents. A detailed kinetic and spectroscopic study has been performed to probe the binding of a triazole-based inhibitor and a bestatin-based inhibitor to both Mn(II)-and Co(II)-loaded type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs. Both inhibitors were found to be moderate competitive inhibitors. The triazoletype inhibitor was found to interact with both active-site metal ions, while the bestatin-type inhibitor was capable of switching its mode of binding depending on the metal in the active site and the type of MetAP enzyme.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (55)
- Lowther TW, Zhang Y, Sampson PB, Honek JF, Matthews BW. Insights into the mechanism of E. coli methionine aminopeptidase from the structural analysis of reaction products and phosphorous- based transition state analogs. Biochemistry 1999;38:14810-14819. [PubMed: 10555963]
- Lowther WT, Matthews BW. Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 2002;102:4581-4607. [PubMed: 12475202]
- Griffith EC, Su Z, Turk BE, Chen S, Chang Y-H, Wu Z, Biemann K, Liu JO. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol 1997;4:461-471. [PubMed: 9224570]
- Selvakumar P, Lakshmikuttyamma A, Kanthan R, Kanthan SC, Dimmock JR, Sharma RK. High expression of methionine aminopeptidase 2 in human colorectal adenocarcinomas. Clin Cancer Res 2004;10:2771-2775. [PubMed: 15102683]
- Selvakumar P, Lakshmikuttyamma A, Lawman Z, Bonham K, Dimmock JR, Sharma RK. Expression of methionine aminopeptidase 2, N-myristoyltransferase, and N-myristoyltransferase inhibitor protein 71 in HT29. Biochem Biophys Res Commun 2004;322:1012-1017. [PubMed: 15336565]
- Bradshaw RA. Protein translocation and turnover in eukaryotic cells. Trends Biochem Sci 1989;14:276-279. [PubMed: 2672448]
- Meinnel T, Mechulam Y, Blanquet S. Methionine as translation start signal-a review of the enzymes of the pathway in Escherichia coli. Biochimie 1993;75:1061-1075. [PubMed: 8199241]
- Bradshaw RA, Brickey WW, Walker KW. N-terminal processing: The methionine aminopeptidase and N a -acetyl transferase families. Trends Biochem Sci 1998;23:263-267. [PubMed: 9697417]
- Arfin SM, Bradshaw RA. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 1988;27(21):7979-7984. [PubMed: 3069123]
- Taunton J. How to starve a tumor. Chem Biol 1997;4:493-496. [PubMed: 9263636]
- Wang J, Tucker LA, Stavropoulos J, Zhang Q, Wang Y-C, Bukofzer G, Niquette A, Meulbroek JA, Barnes DM, Shen J, Bouska J, Donawho C, Sheppard GS, Bell RL. Correlation of tumor growth suppression and methionine aminopetidase-2 activity blockade using an orally active inhibitor. Proc Natl Acad Sci USA 2008;105:1838-1843. [PubMed: 18252827]
- Tucker LA, Zhang Q, Sheppard GS, Lou P, Jiang F, McKeegan E, Lesniewski R, Davidsen SK, Bell RL, Wang J. Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation. Oncogene 2008;27:3967-3976. [PubMed: 18264137]
- Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I, Pravda E, Nahmias Y, Koirala S, Corfas G, D'Amato RJ, Folkman J. An orally delivered small-molecule formulation with anti-angiogenic and anticancer activity. Nat Biotechnol 2008;26:799-807. [PubMed: 18587385]
- Satchi-Fainaro R, Mamluk R, Wang L, Short SM, Nagy JA, Feng D, Dvorak AM, Dvorak HF, Puder M, Mukhopadhyay D, Folkman J. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 2005;7:251-261. [PubMed: 15766663]
- Zhang P, Nicholson DE, Bujnicki JM, Su X, Brendle JJ, Ferdig M, Kyle DE, Milhous WK, Chiang PK. Angiogenesis inhibitors specific for methionine aminopeptidase 2 as drugs for malaria and leishmaniasis. J Biomed Sci 2002;9:34-40. [PubMed: 11810023]
- Douangamath A, Dale GE, D'Arcy A, Almstetter M, Eckl R, Frutos-Hoener A, Henkel B, Illgen K, Nerdinger S, Schulz H, MacSweeney A, Thormann M, Treml A, Pierau S, Wadman S, Oefner C. Crystal structures of Staphylococcus aureus methionine aminopeptidase complexed with keto heterocycle and aminoketone inhibitors reveal the formation of a tetrahedral intermediate. J Med Chem 2004;47:1325-1328. [PubMed: 14998322]
- Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I. Crystal structure of the methionine aminopeptidase from the hyperthermophile, Pyrococcus furiosus. J Mol Biol 1998;284:101-124. [PubMed: 9811545]
- Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant and inhibited enzymes for the mechanism of catalysis. Biochemistry 1999;38:7678-7688. [PubMed: 10387007]
- Roderick LS, Matthews BW. Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry 1993;32:3907-3912. [PubMed: 8471602]
- Liu S, Widom J, Kemp CW, Crews CM, Clardy J. Structure of the human methionine aminopeptidase-2 complexed with fumagillin. Science 1998;282:1324-1327. [PubMed: 9812898]
- Spraggon G, Schwarzenbacher R, Kreusch A, McMullan D, Brinen LS, Canaves JM, Dai X, Deacon AM, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kuhn P, McPhillips TM, Miller MD, Morse A, Moy K, Ouyang J, Page R, Quijano K, Rezezadeh F, Robb A, Sims E, Stevens RC, van den Bedem H, Velasquez J, Vincent J, von Delft F, Wang X, West B, Wolf G, Xu Q, Hodgson KO, Wooley J, Lesley SA, Wilson IA. Crystal structure of a methionine aminopeptidase (TM1478) from Thermotoga maritima at 1.9Å resolution. Proteins 2004;56:396-400. [PubMed: 15211524]
- Ye QZ, Xie SX, Ma ZQ, Huang M, Hanzlik RP. Structural basis of catalysis by monometalated methionine aminopeptidase. Proc Natl Acad Sci USA 2006;103:9470-9475. [PubMed: 16769889]
- D'souza VM, Bennett B, Copik AJ, Holz RC. Characterization of the divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. Biochemistry 2000;39:3817-3826. [PubMed: 10736182]
- Cosper NJ, D'souza V, Scott R, Holz RC. Structural evidence that the methionyl aminopeptidase from Escherichia coli is a mononuclear metalloprotease. Biochemistry 2001;40:13302-13309. [PubMed: 11683640]
- Wang J, Sheppard GS, Lou P, Kawai M, Park C, Egan DA, Schneider A, Bouska J, Lesniewski R, Henkin J. Physiologically relevant metal cofactor for methionine aminopeptidase-2 is manganese. Biochemistry 2003;42:5035-5042. [PubMed: 12718546]
- Chai SC, Wang W-L, Ye Q-Z. Fe(II) is the native cofactor for Escherichia coli methionine aminopeptidase. J Biol Chem 2008;283in press
- D'souza VM, Holz RC. The methionyl aminopeptidase from Escherichia coli is an iron(II) containing enzyme. Biochemistry 1999;38:11079-11085. [PubMed: 10460163]
- Meng L, Ruebush S, D'souza VM, Copik AJ, Tsunasawa S, Holz RC. Overexpression and divalent metal binding studies for the methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry 2002;41:7199-7208. [PubMed: 12044150]
- Walker KW, Bradshaw RA. Yeast methionine aminopeptidase I can utilize either Zn(II) or Co(II) as a cofactor: A case of mistaken identity. Protein Sci 1998;7:2684-2687. [PubMed: 9865965]
- Copik AJ, Swierczek SI, Lowther WT, D'souza V, Matthews BW, Holz RC. Kinetic and spectroscopic characterization of the H178A mutant of the methionyl aminopeptidase from Escherichia coli. Biochemistry 2003;42:6283-6292. [PubMed: 12755633]
- Stamper C, Bennett B, Edwards T, Holz RC, Ringe D, Petsko G. Inhibition of the aminopeptidase from Aeromonas proteolytica by l-leucinephosphonic acid. Spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis. Biochemistry 2001;40:7034-7046.
- Stamper C, Bienvenue D, Moulin A, Bennett B, Ringe D, Petsko G, Holz RC. Spectroscopic and X- ray crystallographic characterization of the bestatin bound form of the aminopeptidase from Aeromonas proteolytica. Biochemistry 2004;43:9620-9628. [PubMed: 15274616]
- Kumar A, Periyannan GR, Narayanan B, Kittell AW, Kim J-J, Bennett B. Experimental evidence for a metallohydrolase mechanism in which the neucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus. Biochem J 2007;403:527-536. [PubMed: 17238863]
- Sin N, Meng L, Wang MQW, Wen JJ, Bornmann WG, Crews CM. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc Natl Acad Sci USA 1997;94:6099-6103. [PubMed: 9177176]
- Swierczek K, Copik AJ, Swierczek SI, Holz RC. Molecular discrimination of type-I over type-II methionyl aminopeptidases. Biochemistry 2005;44:12049-12056. [PubMed: 16142902]
- Luo Q-L, Li J-Y, Liu Z-Y, Chen L-L, Li J, Qian Z, Shen Q, Li Y, Lushington GH, Ye Q-Z, Nan F- J. J Med Chem 2003;46:2631-2640. [PubMed: 12801227]
- Bradshaw R, Yi E. Methionine aminopeptidases and angiogenesis. Essays Biol Med 2002;38:65-78.
- Lowther WT, Matthews BW. Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 2000;1477:157-167. [PubMed: 10708856]
- Addlagatta A, Hu X, Liu JO, Matthews BW. Structural basis for the functional differences between type I and type II human methionine aminopeptidases. Biochemistry 2005;44:14741-14749. [PubMed: 16274222]
- Bertini I, Luchinat C. High-spin cobalt(II) as a probe for the investigation of metalloproteins. Adv Inorg Biochem 1984;6:71-111. [PubMed: 6442958]
- Bennett B, Holz RC. EPR studies on the mono-and dicobalt(II)-substituted forms of the aminopeptidase from Aeromonas proteolytica. Insight into the catalytic mechanism of dinuclear hydrolases. J Am Chem Soc 1997;119:1923-1933.
- Bennett B, Holz RC. Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding. Biochemistry 1997;36:9837-9846. [PubMed: 9245416]
- Gavrilova AL, Bosnich B. Principles of mononucleating and bionucleating ligand design. Chem Rev 2004;104:349-383. [PubMed: 14871128]
- Escuer A, Vicente R, Mernari B, El Gueddi A, Pierrot M. Syntheses, structure, and magnetic behavior of two new nickel(II) and cobalt(II) dinuclear complexes with 1, 4-dicarboxylatopyridazine. MO calculations of the superexchange pathway through the pyridazine bridge. Inorg Chem 1997;36:2511-2516.
- Yoo HS, Lim JH, Kang JS, Koh EK, Hong CS. Triazole-bridged magnetic M(II) assemblies (M = Co, Ni) capped with the end-on terephthalate dianion involving multi-intermolecular contacts. Polyhedron 2007;26:4383-4388.
- Reed GH, Markham GD. Biol Magn Reson 1984;6:73-142.
- McGregor WC, Swierczek SI, Bennett B, Holz RC. Characterization of the catalytically active Mn (II)-loaded argE-encoded N-acetyl-l-ornithine deacetylase from Escherichia coli. J Biol Inorg Chem 2007;12:603-613. [PubMed: 17333302]
- Sheppard GS, Wang J, Kawai M, BaMaung NY, Craig RA, Erickson SA, Lynch L, Patel J, Yang F, Searle XB, Lou P, Park C, Kim KH, Henkin J, Lesniewski R. Bioorg Med Chem Lett 2004;14:865- 868. [PubMed: 15012983]
- Kallander LS, Lu Q, Chen W, Tomaszek T, Yang G, Tew D, Meek TD, Hofmann GA, Schulz- Pritchard CK, Smith WW, Janson CA, Ryan MD, Zhang G-F, Johanson KO, Kirkpatrick RB, Ho TF, Fisher PW, Mattern MR, Johnson RK, Hansbury MJ, Winkler JD, Ward KW, Veber DF, Thompson SK. 4-Aryl-1, 2, 3-triazole: a novel template for a reversible methionine aminopeptidase 2 inhibitor, optimized to inhibit angiogenesis in vivo. J Med Chem 2005;48:5644-5647. [PubMed: 16134930]
- Oefner C, Douangamath A, D'Arcy AHS, Mareque D, Mac Sweeney A, Padilla J, Pierau S, Schulz H, Thormann M, Wadman S, Dale GE. J Mol Biol 2003;332:13-21. [PubMed: 12946343]
- Marino JP, Fisher PW, Hofmann GA, Kirkpatrick RB, Janson CA, Johnson RK, Ma C, Mattern M, Meek TD, Ryan MD, Schulz C, Smith WW, Tew DG, Tomazek TA, Veber DF, Xiong WC, Yamamoto Y, Yamashita K, Yang G, Thompson SK. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1, 2, 4-triazole pharmacophore. J Med Chem 2007;50:3777-3785. [PubMed: 17636946]
- Xie S-X, Huang W-J, Ma Z-Q, Huang M, Hanzlik RP, Ye Q-Z. Acta Crystallogr D 2006;62:425- 432. [PubMed: 16552144]
- Sigel H, McCormick DB. Acc Chem Res 1970;3:201-208.
- Larrabee JA, Leung CH, Moore R, Thamrong-nawasawat T, Wessler BH. Magnetic circular dichroism and cobalt(II) binding equilibrium studies of Escherichia coli methionyl aminopeptidase. J Am Chem Soc 2004;126:12316-12324. [PubMed: 15453765]
- Hu XV, Chen X, Han KC, Mildvan AS, Liu JO. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases. Biochemistry 2007;46:12833-12843. [PubMed: 17929833]