A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae (original) (raw)

A protein encoded by sulD, one of four genes in a previously cloned folate biosynthetic operon of Streptococcus pneumoniae, had been shown to harbor 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase activity. This SulD protein was purified and shown now to harbor also dihydi-oneopterin aldolase activity. The bifunctional protein therefore catalyzes two successive steps in folate biosynthesis. The aldolase activity can be ascribed to the N-terminal domain of the SulD polypeptide, and the pyrophosphokinase activity can be ascribed to the C-terminal domain. Homologs of the dihydroneopterin aldolase domain were identified in other species, in one of which the domain was encoded as a separate polypeptide. The native SulD protein is a trimer or tetramer of a 31-kDa subunit, and it dissociated reversibly after purification. Dihydroneopterin aldolase activity required the multimeric protein, whereas pyrophosphokinase was expressed by the monomeric form. With purified SulD, the amount of 6-hydroxymethyl-7,8-dihydropterih product formed by the aldolase was proportional to the fourth power of the enzyme concentration, as expected for a reversibly dissociating tetramer. By identifying the gene encoding dihydroneopterin aldolase, this work extends our understanding of the molecular basis of the folate biosynthetic system common to many organisms.