A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae (original) (raw)
Related papers
Journal of Bacteriology, 1993
A protein encoded by sulD, one of four genes in a previously cloned folate biosynthetic operon of Streptococcus pneumoniae, had been shown to harbor 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase activity. This SulD protein was purified and shown now to harbor also dihydi-oneopterin aldolase activity. The bifunctional protein therefore catalyzes two successive steps in folate biosynthesis. The aldolase activity can be ascribed to the N-terminal domain of the SulD polypeptide, and the pyrophosphokinase activity can be ascribed to the C-terminal domain. Homologs of the dihydroneopterin aldolase domain were identified in other species, in one of which the domain was encoded as a separate polypeptide. The native SulD protein is a trimer or tetramer of a 31-kDa subunit, and it dissociated reversibly after purification. Dihydroneopterin aldolase activity required the multimeric protein, whereas pyrophosphokinase was expressed by the monomeric form. With purified SulD, the amount of 6-hydroxymethyl-7,8-dihydropterih product formed by the aldolase was proportional to the fourth power of the enzyme concentration, as expected for a reversibly dissociating tetramer. By identifying the gene encoding dihydroneopterin aldolase, this work extends our understanding of the molecular basis of the folate biosynthetic system common to many organisms.
Journal of Bacteriology, 2009
Dihydroneopterin aldolase (FolB) catalyzes conversion of dihydroneopterin to 6-hydroxymethyldihydropterin (HMDHP) in the classical folate biosynthesis pathway. However, folB genes are missing from the genomes of certain bacteria from the phyla Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, and Spirochaetes. Almost all of these folB-deficient genomes contain an unusual paralog of the tetrahydrobiopterin synthesis enzyme 6-pyruvoyltetrahydropterin synthase (PTPS) in which a glutamate residue replaces or accompanies the catalytic cysteine. A similar PTPS paralog from the malaria parasite Plasmodium falciparum is known to form HMDHP from dihydroneopterin triphosphate in vitro and has been proposed to provide a bypass to the FolB step in vivo. Bacterial genes encoding PTPS-like proteins with active-site glutamate, cysteine, or both residues were accordingly tested together with the P. falciparum gene for complementation of the Escherichia coli folB mutation. The P. falciparum sequence and bacterial sequences with glutamate or glutamate plus cysteine were active; those with cysteine alone were not. These results demonstrate that PTPS paralogs with an active-site glutamate (designated PTPS-III proteins) can functionally replace FolB in vivo. Recombinant bacterial PTPS-III proteins, like the P. falciparum enzyme, mediated conversion of dihydroneopterin triphosphate to HMDHP, but other PTPS proteins did not. Neither PTPS-III nor other PTPS proteins exhibited significant dihydroneopterin aldolase activity. Phylogenetic analysis indicated that PTPS-III proteins may have arisen independently in various PTPS lineages. Consistent with this possibility, merely introducing a glutamate residue into the active site of a PTPS protein conferred incipient activity in the growth complementation assay, and replacing glutamate with alanine in a PTPS-III protein abolished complementation.
Plant Physiology, 2004
Dihydroneopterin aldolase (EC 4.1.2.25) is one of the enzymes of folate synthesis that remains to be cloned and characterized from plants. This enzyme catalyzes conversion of 7,8-dihydroneopterin (DHN) to 6-hydroxymethyl-7,8-dihydropterin, and is encoded by the folB gene in Escherichia coli. The E. coli FolB protein also mediates epimerization of DHN to 7,8-dihydromonapterin. Searches of the Arabidopsis genome detected three genes encoding substantially diverged FolB homologs (AtFolB1–3, sharing 57%–73% identity), for which cDNAs were isolated. A fourth cDNA specifying a FolB-like protein (LeFolB1) was obtained from tomato (Lycopersicon esculentum) by reverse transcription-PCR. When overproduced in E. coli, recombinant AtFolB1, AtFolB2, and LeFolB1 proteins all had both dihydroneopterin aldolase and epimerase activities, and carried out the aldol cleavage reaction on the epimerization product, 7,8-dihydromonapterin, as well as on DHN. AtFolB3, however, could not be expressed in acti...
Biochemistry, 1998
In the opportunistic pathogen Pneumocystis carinii, dihydroneopterin aldolase function is expressed as the N-terminal portion of the multifunctional folic acid synthesis protein (Fas). This region encompasses two domains, FasA and FasB, which are 27% amino acid identical. FasA and FasB also share significant amino acid sequence similarity with bacterial dihydroneopterin aldolases. In the present study, this enzyme function has been overproduced as an independent monofunctional activity in Escherichia coli. Recombinant FasAB-Met23 (amino acids 23-290 of the predicted open reading frame) was purified and shown to contain dihydroneopterin aldolase activity. The native FasAB-Met23 is a tetramer of the 30-kDa subunit, demonstrating characteristics of an associating-dissociating equilibrium system in which only the multimeric form of the enzyme is active. Multiple sequence alignment of FasA and FasB with other dihydroneopterin aldolases highlights only three positions where the amino acid is invariable between all the predicted proteins. The role of these conserved amino acid residues in enzyme function was investigated using site-directed mutagenesis. Mutant FasAB-Met23 species were overproduced and purified to near homogeneity. Three FasA domain mutants and two FasB domain mutants had little or no detectable dihydroneopterin aldolase activity, implicating both FasA and FasB in the catalytic mechanism. We show that each mutant protein containing an inactivating amino acid substitution has lost its ability to form stable tetramers.
Genome, 2017
Common beans (Phaseolus vulgaris) are excellent sources of dietary folates, but different varieties contain different amounts of these compounds. Genes coding for dihydroneopterin aldolase (DHNA) and aminodeoxychorismate synthase (ADCS) of the folate synthesis pathway were characterized by PCR amplification, BAC clone sequencing, and whole genome sequencing. All DHNA and ADCS genes in the Mesoamerican cultivar OAC Rex were isolated and compared with those genes in the genome of Andean genotype G19833. Both genotypes have two functional DHNA genes and one pseudo gene. PvDHNA1 and PvDHNA2 proteins have similar secondary structures and conserved residues as DHNA homologs in Staphylococcus aureus and Arabidopsis. Sequence analysis and synteny mapping indicated that PvDHNA1 might be a duplicated and transposed copy of PvDHNA2. There is only one ADCS gene (PvADCS) identified in the bean genome and it is identical in OAC Rex and G19833. PvADCS has the conserved motifs required for catalyti...
Journal of bacteriology, 1995
Two genes, sulB and sulC, in a folate biosynthetic gene cluster of Streptococcus pneumoniae were identified after determination of the DNA sequence between two previously reported genes, sulA and sulD, in a cloned segment of chromosomal DNA containing a mutation to sulfonamide resistance. The gene products, SulB and SulC, correspond to polypeptides of 49 and 21 kDa, respectively. SulC has GTP cyclohydrolase activity and catalyzes the first step in the folate biosynthetic pathway. SulB apparently has dihydrofolate synthetase activity in that it complements a folC mutant of Escherichia coli and thus catalyzes the last step in the pathway. Prior work showed that SulA, a dihydropteroate synthase, and SulD, a bifunctional enzyme, catalyze three intervening steps. Mapping of the mRNA transcribed from the operon was consistent with its beginning at a promoter with a -35 site (gTGtCc) and an extended -10 site (T-TG-TAaAAT) and its termination at the end of a hairpin structure, which would g...
Structure, 2007
Nudix hydrolases are a superfamily of pyrophosphatases, most of which are involved in clearing the cell of potentially deleterious metabolites and in preventing the accumulation of metabolic intermediates. We determined that the product of the orf17 gene of Escherichia coli, a Nudix NTP hydrolase, catalyzes the hydrolytic release of pyrophosphate from dihydroneopterin triphosphate, the committed step of folate synthesis in bacteria. That this dihydroneopterin hydrolase (DHNTPase) is indeed a key enzyme in the folate pathway was confirmed in vivo: knockout of this gene in E. coli leads to a marked reduction in folate synthesis that is completely restored by a plasmid carrying the gene. We also determined the crystal structure of this enzyme using data to 1.8 Å resolution and studied the kinetics of the reaction. These results provide insight into the structural bases for catalysis and substrate specificity in this enzyme and allow the definition of the dihydroneopterin triphosphate pyrophosphatase family of Nudix enzymes.
Journal of bacteriology, 1990
A cloned segment of the chromosome of Streptococcus pneumoniae, in which mutations to sulfonamide resistance occur, contains several genes encoding enzymes for folate biosynthesis. Determination of the DNA sequence of parts of this segment and identification of a putative promoter and terminator of transcription indicate an operon composed of four genes. The first, sulA, encodes the enzyme dihydropteroate synthase. The functions of the second and third possible genes, sulB and sulC, are not known. The last gene, sulD, encodes a 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. The product of this enzyme is the substrate for dihydropteroate synthetase. The enzyme protein was partially purified and shown to consist of a single subunit of 31 kilodaltons, encoded by sulD. On the basis of gel filtration behavior, the native protein appears to be a trimer or tetramer. Subcloning of the sulD gene in an Escherichia coli expression vector increased expression of the pyrophosphokinase 1,00...
Journal of Biological Chemistry, 2001
We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (؎ 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V max of 7 units mg ؊1 of protein for fructose 6-phosphate cleavage (at 30°C, pH 8.5 in 50 mM glycylglycine buffer). For the aldolization reaction a V max of 45 units mg ؊1 of protein was found; K m values for the substrates were 9 mM for fructose 6-phosphate, 35 mM for dihydroxyacetone, and 0.8 mM for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier.