Functional expression of a multidrug P-glycoprotein transporter of Leishmania (original) (raw)

Dihidro-β-Agarofuran Sesquiterpenes: A New Class of Reversal Agents of the Multidrug Resistance Phenotype Mediated by P-Glycoprotein in the Protozoan Parasite Leishmania

Current Pharmaceutical Design, 2005

Leishmaniasis is the most important emerging and uncontrolled infectious disease and the second cause of death among parasitic diseases, after Malaria. One of the main problems concerning the control of infectious diseases is the increased resistance to usual drugs. Overexpression of P-glycoprotein (Pgp)-like transporters represents a very efficient mechanism to reduce the intracellular accumulation of drugs in cancer cells and parasitic protozoans, thus conferring a multidrug resistance (MDR) phenotype. Pgps are active pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. The inhibition of the activity of these proteins represents an interesting way to control drug resistance both in cancer and in infectious diseases. Most conventional mammalian Pgp-MDR modulators are ineffective in the modulation of Pgp activity in the protozoan parasite Leishmania. Consequently, there is a necessity to find effective modulators of Pgp-MDR for protozoan parasites. In this review we describe a rational strategy developed to find specific Pgp-MDR modulators in Leishmania, using natural and semisynthetic dihydro-β-agarofuran sesquiterpenes from Celastraceae plants. A series of these compounds have been tested on a MDR Leishmania tropica line overexpressing a Pgp transporter to determine their ability to revert the resistance phenotype and to modulate intracellular drug accumulation. Almost all of these natural compounds showed potent reversal activity with different degrees of selectivity and a significant low toxicity. The three-dimensional quantitative structure-activity relationship using the comparative molecular similarity indices analysis (CoMSIA), was employed to characterize the requirements of these sesquiterpenes as modulators at Pgp-like transporter in Leishmania.

Dihidro-β-agarofuran sesquiterpenes : A new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania : Treatment of infectious diseases and drug resistance

Current Pharmaceutical Design, 2005

Leishmaniasis is the most important emerging and uncontrolled infectious disease and the second cause of death among parasitic diseases, after Malaria. One of the main problems concerning the control of infectious diseases is the increased resistance to usual drugs. Overexpression of P-glycoprotein (Pgp)-like transporters represents a very efficient mechanism to reduce the intracellular accumulation of drugs in cancer cells and parasitic protozoans, thus conferring a multidrug resistance (MDR) phenotype. Pgps are active pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. The inhibition of the activity of these proteins represents an interesting way to control drug resistance both in cancer and in infectious diseases. Most conventional mammalian Pgp-MDR modulators are ineffective in the modulation of Pgp activity in the protozoan parasite Leishmania. Consequently, there is a necessity to find effective modulators of Pgp-MDR for protozoan parasites. In this review we describe a rational strategy developed to find specific Pgp-MDR modulators in Leishmania, using natural and semisynthetic dihydro-β-agarofuran sesquiterpenes from Celastraceae plants. A series of these compounds have been tested on a MDR Leishmania tropica line overexpressing a Pgp transporter to determine their ability to revert the resistance phenotype and to modulate intracellular drug accumulation. Almost all of these natural compounds showed potent reversal activity with different degrees of selectivity and a significant low toxicity. The three-dimensional quantitative structure-activity relationship using the comparative molecular similarity indices analysis (CoMSIA), was employed to characterize the requirements of these sesquiterpenes as modulators at Pgp-like transporter in Leishmania.

Dihydro-beta-agarofuran sesquiterpenes: a new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania

Current pharmaceutical design, 2005

Leishmaniasis is the most important emerging and uncontrolled infectious disease and the second cause of death among parasitic diseases, after Malaria. One of the main problems concerning the control of infectious diseases is the increased resistance to usual drugs. Overexpression of P-glycoprotein (Pgp)-like transporters represents a very efficient mechanism to reduce the intracellular accumulation of drugs in cancer cells and parasitic protozoans, thus conferring a multidrug resistance (MDR) phenotype. Pgps are active pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. The inhibition of the activity of these proteins represents an interesting way to control drug resistance both in cancer and in infectious diseases. Most conventional mammalian Pgp-MDR modulators are ineffective in the modulation of Pgp activity in the protozoan parasite Leishmania. Consequently, there is a necessity to find effective modulators of Pgp-MDR for protozoan parasites. In this revi...

Alkyl-Lysophospholipid Resistance in Multidrug-Resistant Leishmania tropica and Chemosensitization by a Novel P-Glycoprotein-Like Transporter Modulator

Antimicrobial Agents and Chemotherapy, 2001

Drug resistance has emerged as a major impediment in the treatment of leishmaniasis. Alkyl-lysophospholipids (ALP), originally developed as anticancer drugs, are considered to be the most promising antileishmanial agents. In order to anticipate probable clinical failure in the near future, we have investigated possible mechanisms of resistance to these drugs in Leishmania spp. The results presented here support the involvement of a member of the ATP-binding cassette (ABC) superfamily, the LeishmaniaP-glycoprotein-like transporter, in the resistance to ALP. (i) First, a multidrug resistance (MDR) Leishmania tropicaline overexpressing a P-glycoprotein-like transporter displays significant cross-resistance to the ALP miltefosine and edelfosine, with resistant indices of 9.2- and 7.1-fold, respectively. (ii) Reduced expression of P-glycoprotein in the MDR line correlates with a significant decrease in ALP resistance. (iii) The ALP were able to modulate the P-glycoprotein-mediated resist...

Characterization of an ABCG-Like Transporter from the Protozoan Parasite Leishmania with a Role in Drug Resistance and Transbilayer Lipid Movement

Antimicrobial Agents and Chemotherapy, 2008

Leishmaniasis treatment is hampered by the increased appearance of treatment failure. ATP-binding cassette (ABC) transporters are usually involved in drug resistance both in tumor cells and in microorganisms. Here we report the characterization of an ABCG-like transporter, LiABCG6, localized mainly at the plasma membrane in Leishmania protozoan parasites. When overexpressed, this half-transporter confers significant resistance to the leishmanicidal agents miltefosine and sitamaquine. This resistance phenotype is mediated by a reduction in intracellular drug accumulation. LiABCG6 also reduces the accumulation of short-chain fluorescent phospholipid analogues of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. As a whole, these results suggest that LiABCG6 could be implicated in phospholipid trafficking and drug resistance.

Combination of Suboptimal Doses of Inhibitors Targeting Different Domains of LtrMDR1 Efficiently Overcomes Resistance of Leishmania spp. to Miltefosine by Inhibiting Drug Efflux

Antimicrobial Agents and Chemotherapy, 2006

Miltefosine (hexadecylphosphocholine) is the first orally active drug approved for the treatment of leishmaniasis. We have previously shown the involvement of LtrMDR1, a P-glycoprotein-like transporter belonging to the ATP-binding cassette superfamily, in miltefosine resistance in Leishmania. Here we show that overexpression of LtrMDR1 increases miltefosine efflux, leading to a decrease in drug accumulation in the parasites. Although LtrMDR1 modulation might be an efficient way to overcome this resistance, a main drawback associated with the use of P-glycoprotein inhibitors is related to their intrinsic toxicity. In order to diminish possible side effects, we have combined suboptimal doses of modulators targeting both the cytosolic and transmembrane domains of LtrMDR1. Preliminary structure-activity relationships have allowed us to design a new and potent flavonoid derivative with high affinity for the cytosolic nucleotide-binding domains. As modulators directed to the transmembrane domains, we have selected one of the most potent dihydro-␤agarofuran sesquiterpenes described, and we have also studied the effects of two of the most promising, latest-developed modulators of human P-glycoprotein, zosuquidar (LY335979) and elacridar (GF120918). The results show that this combinatorial strategy efficiently overcomes P-glycoprotein-mediated parasite miltefosine resistance by increasing intracellular miltefosine accumulation without any side effect in the parental, sensitive, Leishmania line and in different mammalian cell lines.

P-glycoprotein A Gene Expression in Glucantime-Resistant and Sensitive Leishmania major (MRHO/IR/75/ER)

Iranian journal of parasitology, 2014

Leishmaniasis is a parasitic disease caused by different species of Leishmania parasites with a wide range of clinical manifestations. Antimonial compounds such as meglumine antimoniate (glucantime) are the first line drugs for the treatment of leishmaniasis. However, according to reports of the drug resistance of parasites, the efficacy of antimonial compounds is low. The ATP-binding cassette (ABC) proteins are present in all organisms and mediate the transport of vital elements through biological membranes. One of the important mechanisms of resistance in Leishmania parasites is the overexpression of ABC efflux pumps. P-glycoprotein A (pgpA) is a related gene for ABC transporter in Leishmania species. The aim of this study was to compare the pgpA expression in laboratory-induced resistant L. major (MRHO/IR/75/ER) and sensitive parasites. RNA extraction of promastigotes of sensitive and resistant clones was performed and total RNA was reverse transcribed. The real-time quantitative...

Leishmania amazonensis: Metabolic adaptations induced by resistance to an ABC transporter blocker

Experimental Parasitology, 2006

We compared growth rate, cell glucose turnover and expression of ATP-binding-cassette (ABC) transporters in Leishmania amazonensis (LTB0016; LTB) versus LTB 160 selected for resistance against the ABC transporter blocker glibenclamide. Additionally, we evaluated the inXuence of drug-resistance on Leishmania sensitivity against 2-mercaptoacetate and 2-deoxyglucose. Our data demonstrate that (1) LTB 160 and LTB constitutively express ABC transporters for neutral substrates, (2) glibenclamide resistance induces the expression of organic anion ABC transporters, members of the drug resistance associated transporters subfamily, (3) LTB 160 parasites use less glucose as energy substrate and exhibit a slower glucose uptake than LTB cells, and (4) LTB 160 parasites are less sensitive to 2-mercaptoacetate and 2-deoxyglucose than the glibenclamide-sensitive Leishmania LTB. Together these and previous results indicate that the metabolic adaptations expressed in drug-resistant LTB 160 diVer from those described for mammalian drug resistant cells and constitute general mechanisms that underlie drug resistance in Leishmania and may be helpful for identifying alternative strategies to circumvent drug resistance in leishmaniasis.