Algebraic structures for capturing the provenance of SPARQL queries (original) (raw)
2013, Proceedings of the 16th International Conference on Database Theory - ICDT '13
We show that the evaluation of SPARQL algebra queries on various notions of annotated RDF graphs can be seen as particular cases of the evaluation of these queries on RDF graphs annotated with elements of so-called spm-semirings. Spm-semirings extend semirings, used for positive relational algebra queries on annotated relational data, with a new operator to capture the semantics of the non-monotone SPARQL operator OPTIONAL. Furthermore, spmsemiring-based annotations ensure that desired SPARQL query equivalences hold when querying annotated RDF. In addition to introducing spm-semirings, we study their properties and provide an alternative characterization of these structures in terms of semirings with an embedded boolean algebra (or seba-structure for short). This characterization allows to construct spm-semirings and to identify a universal object in the class of spm-semirings. Finally, we show that this universal object provides a concise provenance representation and can be used to evaluate SPARQL queries on arbitrary spm-semiring-annotated RDF graphs.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.