Vapor bubble growth in heterogeneous boiling—I. Formulation (original) (raw)
Abstract
Abstraet--A numerical analysis is carried out to study bubble growth in saturated heterogeneous boiling. The bubble growth is determined by considering the simultaneous energy transfer among the vapor bubble, liquid microlayer, and heater. Finite difference solutions for the temperature fields in the microlayer and heater are obtained on expanding coordinates as the bubble grows. The parameters characterizing the bubble shape and microlayer wedge angle are determined by matching the existing experimental data. The predicted bubble growth rate compares very well with the reported experimental data over a wide range of conditions.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (32)
- P. Dergarabedian, The rate of growth ofvapour bubbles in superheated water, J. Appl. Mech. 20, 537-545 (1953).
- M. S. Plesset and S. A. Zwick, The growth of vapour bubbles in supeiheated liquids, J. Appl. Phys. 25, 493- 500 (1954).
- H.K. Forster and N. Zuber, Growth of a vapour bubble in a superheated liquid, J. Appl. Phys. 25, 474-478 (1954).
- L. E. Scriven, On the dynamics of phase growth, Chem. Engng Sci. 10, 1-13 (1959).
- P. Griflith, Bubble growth rates in boiling, ASME Trans. 80, 721-727 (1958).
- N. Zuber, The dynamics of vapor bubbles in nonuniform temperature fields, Int. J. Heat Mass Transfer 2, 83-98 (1961).
- L. A. Skinner and S. G. Bankoff, Dynamics of vapor bubbles in spherically symmetric temperature fields of general variation, Physics Fluids 7, 1-6 (1964).
- C. Y. Han and P. Grittith, The mechanism of heat trans- fer in nucleate pool boiling--I. Bubble initiation, growth and departure, Int. J. Heat Mass Transfer 8, 887-904 (1965).
- S. J. D. Van Stralen, The mechanism of nucleate boiling in pure liquids and in binary mixtures--l-IV, Int. J. Heat Mass Transfer9, 995-1020, 1021-1046 (1966) ; 10, 1469- 1484, 1485-1498 (1967).
- B.B. Mikic, W. M. Rohsenow and P. Gritfith, On bubble growth rates, Int. J. Heat Mass Transfer 13, 657-666 (1970).
- I 1. R. Cole and H. L. Shulman, Bubble growth rates at high Jacob numbers, Int. J. Heat Mass Transfer 9, 1377-1390 (1966).
- S. J. D. Van Stralen, R. Cole, W. M. Sluyter and M. S. Sohal, Bubble growth rates in nucleate boiling of water at subatmospheric pressures, Int. J. Heat Mass Transfer lg, 655-669 (19"75).
- B. E. Staniszewski, Bubble growth and departure in nucleate boiling, Tech. Rept. No. 16, MIT, Cambridge, MA (1959).
- M. Akiyama, F. Tachibana and N. Ogawa, Effect of pressure on bubble growth in pool boiling, Bull. JSME 12,(53), 1121-1128 (1969).
- E. G. Keshock and R. Siegel, Forces acting on bubbles in nucleate boiling under normal and reduced gravity conditions, NASA Tech. Note TN D-2299 (1964).
- D. A. Labunstov, Mechanism of vapour bubble growth in boiling on the heating surface, J. Engng Phys. 6(4), 33-39 (1963).
- M. G. Cooper, The microlayer and bubble growth in nucleate pool boiling, Int. J. Heat Mass Transfer 12, 915-933 (1969).
- G. S. Dzakowi¢: and W. Frost, Vapour bubble growth in saturated pool boiling by microlayer evaporation of liquid at the heated surface, Proceedings of the 4th Inter- national Heat Transfer Conference, Paris, Vol. 5, paper B2.2. Elsevier, Amsterdam (1970).
- N. S. Srinivas and R. Kumar, Prediction of bubble growth rates and departure volumes in nucleate boiling at isolated sites, Int. J. Heat Mass Transfer 27, 1403- 1409 (1984).
- M. G. Cooper and R. M. Vijuk, Bubble growth in nucleate pool boiling, Proceedings of the 4th International Heat Transfer Conference, Paris, Vol. 5, paper B2.1. Elsevier, Amsterdam 0970).
- S. J. D. Van Stralen, M. S. Sohal, R. Cole and W. M. Sluyter, Bubble growth rates in pure and binary systems : combined effect of relaxation and evaporation micro- layers, Int. J. Heat Mass Transfer 18, 453-467 (1975).
- M. V. Fyodorov and V. V. Klimenko, Vapour bubble growth in boiling under quasi-stationary heat transfer conditions in a heating wall, Int, J. Heat Mass Transfer 32, 227-242 0989),
- R. C. Lee and J. E. Nydahl, Numerical calculation of bubble growth in nucleate boiling from inception through departure, J. Heat Transfer, Trans. ASME 111, 474-479 (1989).
- L. Z. Zeng, J. F. Klausner and R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems--I. Pool boiling, Int. J. Heat Mass Transfer 36, 2261-2270 (1993).
- L. Z. Zeng, J. F. Klausner, D. M. Bernhard and R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems--II. Flow boiling, Int. J. Heat Mass Transfer 36, 2271-2279, (1993).
- J. W. Westwater, Things we don't know about boiling heat transfer. In Research in Heat Transfer, pp. 61-73. Pergamon Press, New York (1963).
- F. M. Moore and R. B. Mesler, The measurement of rapid surface temperature fluctuations during nucleate boiling of water, A.LCh.E. Jl 7(4), 620-624 (1961).
- N. B. Hospeti and R. B. Metier, Vaporization at the base of bubbles of different shape during nucleate boiling of water, A.I.Ch.E. J115(2), 214-219 (1969).
- R. Mei, W. Chen and J. F. Klausner, Vapor bubble growth in heterogeneous boiling--II. Growth rate and thermal fields, Int. J. Heat Mass Transfer 38, 921-934 (1995).
- L. D. Koffman and M. S. Plesset, Experimental obser- vations of the microlayer in vapor bubble growth on a heated solid, J. Heat Transfer, Trans. ASME 105, 625- 632 (1983).
- M. G. Cooper and A. J. P. Lloyd, The microlayer in nucleate pool boiling, Int. J. Heat Mass Transfer 12, 895-913 (1969).
- D. A. Anderson, J. C. Tennehill and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, p. 549. McGraw-Hill, New York 0984).