Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model (original) (raw)
2009, Journal of Sound and Vibration
The flow-induced vibrations of a single-layer vocal fold model were investigated as a function of vocal fold stiffness, and subglottal and supraglottal acoustic loading. Previously, it was reported that the single-layer vocal fold model failed to vibrate when short, clinically-relevant tracheal tubes were used. Moreover, it was reported that the model had a propensity to be acoustically driven, and aerodynamically driven vibration was observed only when a vertical restraint was applied superiorly to the vocal folds. However, in this study involving a wider range of source/tract conditions, the previous conclusions were shown to apply only for the special case of a stiff vocal fold model, for which self-oscillation occurred only when the vocal fold vibration synchronized to either a subglottal or supraglottal resonance. For a more general case, when vocal fold stiffness was decreased, the model did exhibit self-oscillation at short tracheal tubes, and no vertical restraint was needed to induce aerodynamically driven phonation. Nevertheless, the vocal fold vibration transitioned from aerodynamically-driven to acoustically-driven vibration when one of the subglottal resonance frequencies approximated one of the natural frequencies of the vocal folds. In this region, strong superior-inferior vibrations were observed, the phonation threshold pressure was significantly reduced, and the phonation onset frequency was heavily influenced by the dominant acoustic resonance. For acoustically-driven phonation, a compliant subglottal system always lowered phonation threshold. However, an inertive vocal tract could either increase or decrease phonation threshold pressure, depending on the phonation frequency.