Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation (original) (raw)

1998, Experimental Neurology

Abstract

In order to assess the potential of embryonic stem cells to undergo neuronal differentiation in vivo, totipotent stem cells from mouse blastocysts (D3 and E14TG2a; previously expanded in the presence of leukemia inhibitory factor) were transplanted, with or without retinoic acid pretreatment, into adult mouse brain, adult lesioned rat brain, and into the mouse kidney capsule. Intracerebral grafts survived in 61% of cyclosporine immunosuppressed rats and 100% of mouse hosts, exhibited variable size and morphology, and both intracerebral and kidney capsule grafts developed large numbers of cells exhibiting neuronal morphology and immunoreactivity for neurofilament, neuron-specific enolase, tyrosine hydroxylase (TH), 5hydroxytryptamine (5-HT), and cells immunoreactive for glial fibrillary acidic protein. Though graft size and histology were variable, typical grafts of 5-10 mm 3 contained 10-20,000 TH ؉ neurons, whereas dopamine-␤-hydroxylase ؉ cells were rare. Most grafts also included nonneuronal regions. In intracerebral grafts, large numbers of astrocytes immunoreactive for glial fibrillary acidic protein were present. Both TH ؉ and 5-HT ؉ axons from intracerebral grafts grew into regions of the dopamine-lesioned host striatum. TH ؉ axons grew preferentially into striatal gray matter, while 5-HT ؉ axons showed no white/gray matter preference. These findings demonstrate that transplantation to the brain or kidney capsule can induce a significant fraction of totipotent embryonic stem cells to become putative dopaminergic or serotonergic neurons and that when transplanted to the brain these neurons are capable of innervating the adult host striatum. 1998

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (57)

  1. Abercrombie, M. 1946. Estimation of nuclear populations from microtome sections. Anat. Rec. 94: 239-247.
  2. Bain, G., D. Kitchens, M. Yao, J. E. Huettner, and D. I. Gottlieb. 1995. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168: 342-357.
  3. Bradley, A., M. Evans, M. H. Kaufman, and E. Robertson. 1984. Formation of germ-line chimaeras from embryo-derived terato- carcinoma cell lines. Nature 309: 255-256.
  4. Brundin, P., O. Isacson, and A. Bjo ¨rklund. 1985. Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res. 331: 251-259.
  5. Cattaneo, E., L. Magrassi, G. Butti, L. Santi, A. Giavazzi, and S. Pezzotta. 1994. A short term analysis of the behavior of condition- ally immortalized neuronal progenitors and primary neuroepi- thelial cells implanted in the fetal rat brain. Dev. Brain Res. 83: 197-208.
  6. Cattaneo, E., and R. McKay. 1990. Proliferation and differentia- tion of neuronal stem cells regulated by nerve growth factor. Nature 347: 762-765.
  7. Dinsmore, J., J. Ratliff, T. Deacon, P. Pakzaban, D. Jacoby, W. Galpern, and O. Isacson. 1996. Embryonic stem cells differenti- ated in vitro as a novel source of cells for transplantation. Cell Transplant. 5: 131-143.
  8. Doetschman, T. C., H. Eistetter, M. Katz, W. Schmidt, and R. Kemler. 1985. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands, and myocardium. J. Embryol. Exp. Morph. 87: 27-45.
  9. Evans, M. J., and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156.
  10. Finger, S., R. S. Heavens, D. J. S. Sirinathsinghji, M. R. Kuehn, and S. B. Dunnett. 1988. Behavioral and neurochemical evalua- tion of a transgenic mouse model of Lesch-Nyhan syndrome. J. Neurol. Sci. 86: 203-213.
  11. Fraichard, A., O. Chassande, G. Bilbaut, C. Dehay, P. Savatier, and J. Samarut. 1995. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108: 3181-3188.
  12. Frederiksen, K., P. S. Jat, N. Valtz, D. Levy, and R. D. G. McKay. 1988. Immortalization of precursor cells from the mammalian CNS. Neuron 1: 439-448.
  13. Gage, F. H., P. W. Coates, T. D. Palmer, H. G. Kuhn, L. J. Fisher, J. O. Suhquen, D. A. Peterson, S. T. Suhr, and J. Ray. 1995. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92: 11879-11883.
  14. Galpern, W. R., L. H. Burns, T. W. Deacon, J. Dinsmore, and O. Isacson. 1996. Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson's disease: functional recovery and graft morphology. Cell Transplant. 140: 1-13.
  15. Gritti, A., E. A. Parati, L. Cova, P. Frolichsthal, R. Galli, E. Wanke, L. Faravelli, D. J. Morassutti, F. Roisen, D. D. Nickel, and A. L. Vescovi. 1996. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16: 1091-1100.
  16. Grunz, H., and L. Tacke. 1989. Neural differentiation of Xeno- pus laevis ectoderm takes place after disaggregation and de- layed reaggregation without inducer. Cell Diff. Dev. 28.
  17. Hammond, D. N., B. H. Wainer, J. H. Tonsgard, and A. Heller. 1986. Neuronal properties of clonal hybrid cell lines derived from central cholinergic neurons. Science 234: 1237-1240.
  18. Hemmati-Brevanlou, A., and D. Melton. 1994. A truncated activin receptor inhibits mesoderm induction and formation of axial patterning in Xenopus embryos. Nature 359: 609-614.
  19. Hemmati-Brivanlou, A., O. Kelley, and D. Melton. 1994. Fol- listatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283-295.
  20. Hemmati-Brivanlou, A., and D. Melton. 1997. Vertebrate embry- onic cells will become nerve cells unless told otherwise. Cell 88: 13-17.
  21. Hogan, B. 1996. Bone morphogenic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10: 1580- 1594.
  22. Isacson, O., and T. W. Deacon. 1996. Specific axon guidance factors persist in the mature rat brain: evidence from fetal neuronal xenografts. Neuroscience 75: 827-837.
  23. Isacson, O., T. W. Deacon, P. Pakzaban, W. R. Galpern, J. Dinsmore, and L. H. Burns. 1995. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remark- able axonal target specificity and distinct growth patterns of glial and axonal fibres. Nature Med. 1: 1189-1194.
  24. Jinnah, H. A., B. E. Wojcik, M. Hunt, N. Narang, K. Y. Lee, M. Goldstein, J. K. Wamsley, and P. J. Langlais. 1994. Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. J. Neurosci. 14: 1164-1175.
  25. Keller, G., M. Kennedy, T. Papayannopoulou, and M. V. Wiles. 1993. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13: 473-486.
  26. Kilpatrick, T. J., and P. F. Bartlett. 1995. Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci. 15: 3653-3661.
  27. Kleppner, S. R., K. A. Robinson, J. Q. Trojanowski, and V. M.-Y. Lee. 1995. Transplanted human neurons derived from a terato- carcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J. Comp. Neurol. 357: 618-632.
  28. Lee, H. J., D. N. Hammond, T. H. Large, J. D. Roback, J. A. Sim, D. A. Brown, U. H. Otten, and B. H. Wainer. 1990. Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice. J. Neurosci. 10: 1779-1787.
  29. Lundberg, C., A. Martinez-Serrano, E. Cattaneo, R. D. G. McKay, and A. Bjo ¨rklund. 1996. Survival, integration and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp. Neurol., in press.
  30. MacPherson, P. A., and M. W. McBurney. 1995. P19 embryonal carcinoma cells: a source of cultured neurons amenable to genetic manipulation. Methods: Comp. Methods Enzymol. 7: 222-237.
  31. McBurney, M. W., E. M. V. Jones-Villeneuve, M. K. S. Edwards, and P. J. Andersen. 1982. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299: 165-167.
  32. McKay, R. 1997. Stem cells in the central nervous system. Science 276: 66-71.
  33. Miyazono, M., V. M.-Y. Lee, and J. Q. Trojanowski. 1995. Proliferation, cell death, and neuronal differentiation in trans- planted human embryonal carcinoma (NTera2) cells depend on the graft site in nude and severe combined immunodeficient mice. Lab. Invest. 73: 273-283.
  34. Morassutti, D. J., W. A. Staines, D. S. K. Magnuson, K. C. Marshall, and M. W. McBurney. 1994. Murine embryonal carci- noma-derived neurons survive and mature following transplan- tation into adult rat striatum. Neuroscience 58: 753-763.
  35. Murphy, M., J. Drago, and P. F. Bartlett. 1990. Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J. Neurosci. Res. 25: 463-475.
  36. Nagy, A., E. Gozca, E. M. Diaz, V. R. Prideaux, E. Ivanyi, M. Markkula, and J. Rossant. 1990. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110: 815-821.
  37. Onifer, S. M., S. R. Whittemore, and V. R. Holets. 1993. Variable morphological differentiation of a raphe-derived neuronal cell line following transplantation into the adult rat CNS. Exp. Neurol. 122: 130-142.
  38. Pakzaban, P., T. Deacon, L. Burns, and O. Isacson. 1993. Increased proportion of AChE-rich zones and improved morpho- logic integration in host striatum of fetal grafts derived from the lateral but not the medial ganglionic eminence. Exp. Brain Res. 97: 13-22.
  39. Pleasure, S. J., C. Page, and V. M. Y. Lee. 1992. Pure, postmi- totic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in termi- nally differentiated neurons. J. Neurosci. 12: 1802-1815.
  40. Ray, J., D. A. Peterson, M. Schinstine, and F. H. Gage. 1993. Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc. Natl. Acad. Sci. USA 90: 3602- 3606.
  41. Renfranz, P. J., M. G. Cunningham, and R. D. G. McKay. 1991. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66: 713-729.
  42. Reynolds, B. A., W. Tetzlaff, and S. Weiss. 1992. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12: 4565-4574.
  43. Reynolds, B. A., and S. Weiss. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707-1710.
  44. Richards, L. J., T. J. Kilpatrick, and P. F. Bartlett. 1992. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl. Acad. Sci. USA 89: 8591-8595.
  45. Robbins, J., J. Gulick, A. Sanches, P. Howles, and T. Doest- schman. 1990. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265: 11905-11909.
  46. Ryder, E. F., E. Y. Snyder, and C. L. Depko. 1990. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J. Neurobiol. 21: 356-375.
  47. Sasai, Y., B. Lu, H. Steinbeisser, D. Geissert, L. Gont, and E. De Robertis. 1994. Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779- 790.
  48. Schmitt, R. M., E. Bruyns, and H. R. Snodgrass. 1991. Hemato- poietic development of embryonic stem cells in vitro: Cytokine and receptor gene expression. Genes Dev. 5: 728-740.
  49. Shihabuddin, L. S., J. A. Hertz, V. R. Holets, and S. R. Whittemore. 1995. The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precur- sor cell line. J. Neurosci. 15: 6666-6678.
  50. Snyder, E. Y., D. L. Deitcher, C. Walsh, S. Arnold-Aldea, E. A. Hartwieg, and L. C. C. Hartwieg. 1992. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68: 33-51.
  51. Stemple, D. L., and N. K. Mahanthappa. 1997. Neural stem cells are blasting off. Neuron 18: 1-4.
  52. Svendsen, C. N., D. J. Clarke, A. E. Rosser, and S. B. Dunnett. 1996. Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system. Exp. Neurol. 137: 376-388.
  53. Svendsen, C. N., and A. E. Rosser. 1995. Neurons from stem cells. Trends Neurosci. 18: 465-467.
  54. Whittemore, S. R., and E. Y. Snyder. 1996. Physiological rel- evance and functional potential of central nervous system- derived cell lines. Mol. Neurobiol. 12: 13-38.
  55. Wilson, P. A., and A. Hemmati-Brivanlou. 1995. Induction of epidemis and inhibition of neural fate by Bmp-4. Nature 376: 331-333.
  56. Wojcik, B. E., F. Nothias, M. Lazar, H. Jouin, J. Nicolas, and M. Peschanski. 1993. Catecholaminergic neurons result from the intracerebral implantation of embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 90: 1305-1309.
  57. Zimmerman, L., J. De Jesus-Escobar, and R. Harland. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenic protein. Cell 86: 599-606.