Predicting People's 3D Poses from Short Sequences (original) (raw)
Abstract
We propose an efficient approach to exploiting motion information from consecutive frames of a video sequence to recover the 3D pose of people. Instead of computing candidate poses in individual frames and then linking them, as is often done, we regress directly from a spatio-temporal block of frames to a 3D pose in the central one. We will demonstrate that this approach allows us to effectively overcome ambiguities and to improve upon the state-of-the-art on challenging sequences.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (41)
- A. Agarwal and B. Triggs. 3D Human Pose from Silhouettes by Relevance Vector Regression. In CVPR, 2004.
- M. Andriluka, S. Roth, and B. Schiele. Monocular 3D Pose Estimation and Tracking by Detection. In CVPR, 2010.
- V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and S. Ilic. 3D Pictorial Structures for Multiple Human Pose Estimation. In CVPR, 2014.
- L. Bo and C. Sminchisescu. Twin Gaussian Processes for Structured Prediction. IJCV, 2010.
- L. Bo, C. Sminchisescu, A. Kanaujia, and D. Metaxas. Fast Algorithms for Large Scale Conditional 3D Prediction. In CVPR, June 2008.
- M. Burenius, J. Sullivan, and S. Carlsson. 3D Pictorial Struc- tures for Multiple View Articulated Pose Estimation. In CVPR, 2013.
- X. Burgos-Artizzu, D. Hall, P. Perona, and P. Dollár. Merg- ing Pose Estimates Across Space and Time. In BMVC, 2013.
- C. Cortes, M. Mohri, and J. Weston. A General Regression Technique for Learning Transductions. In ICML, 2005.
- J. Deutscher, A. Blake, and I. Reid. Articulated Body Motion Capture by Annealed Particle Filtering. In CVPR, 2000.
- P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra- manan. Object Detection with Discriminatively Trained Part Based Models. PAMI, 32(9), 2010.
- V. Ferrari, M. Martin, and A. Zisserman. Progressive Search Space Reduction for Human Pose Estimation. In CVPR, 2008.
- J. Gall, B. Rosenhahn, T. Brox, and H.-P. Seidel. Optimiza- tion and Filtering for Human Motion Capture. IJCV, 2010.
- M. Hofmann and D. M. Gavrila. Multi-view 3D Human Pose Estimation in Complex Environment. IJCV, 2012.
- T. Hofmann, B. Schlkopf, and A. J. Smola. Kernel Methods in Machine Learning. The Annals of Statistics, 36(3):1171- 1220, 2008.
- C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation. In CVPR, 2014.
- C. Ionescu, I. Papava, V. Olaru, and C. Sminchisescu. Hu- man3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. PAMI, 2014.
- A. Kanaujia, C. Sminchisescu, and D. N. Metaxas. Semi- supervised Hierarchical Models for 3D Human Pose Recon- struction. In CVPR, 2007.
- A. Kläser, M. Marszałek, and C. Schmid. A Spatio-Temporal Descriptor Based on 3D-Gradients. In BMVC, 2008.
- I. Kostrikov and J. Gall. Depth Sweep Regression Forests for Estimating 3D Human Pose from Images. In BMVC, 2014.
- I. Laptev. On Space-Time Interest Points. IJCV, 64(2- 3):107-123, 2005.
- F. Li, G. Lebanon, and C. Sminchisescu. Chebyshev Ap- proximations to the Histogram χ 2 Kernel. In CVPR, 2012.
- S. Li and A. B. Chan. 3D Human Pose Estimation from Monocular Images with Deep Convolutional Network. In ACCV, 2014.
- R. Memisevic, L. Sigal, and D. J. Fleet. Shared Kernel In- formation Embedding for Discriminative Inference. PAMI, pages 778-790, April 2012.
- D. Park, C. L. Zitnick, D. Ramanan, and P. Dollár. Exploring Weak Stabilization for Motion Feature Extraction. In CVPR, 2013.
- D. Ramanan. Learning to Parse Images of Articulated Bod- ies. In NIPS, 2006.
- D. Ramanan, A. Forsyth, and A. Zisserman. Strike a Pose: Tracking People by Finding Stylized Poses. In CVPR, 2005.
- B. Sapp, A. Toshev, and B. Taskar. Cascaded Models for Articulated Pose Estimation. In ECCV, 2010.
- B. Sapp, D. J. Weiss, and B. Taskar. Parsing Human Motion with Stretchable Models. In CVPR, 2011.
- J. Shotton, A. Fitzgibbon, M. Cook, and A. Blake. Real- Time Human Pose Recognition in Parts from a Single Depth Image. In CVPR, 2011.
- L. Sigal, A. Balan, and M. J. Black. Combined Discrimi- native and Generative Articulated Pose and Non-rigid Shape Estimation. In NIPS, 2007.
- L. Sigal, A. Balan, and M. J. Black. Humaneva: Synchro- nized Video and Motion Capture Dataset and Baseline Algo- rithm for Evaluation of Articulated Human Motion. IJCV, 87(1-2):4-27, 2010.
- L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Track- ing Loose-limbed People. In CVPR, 2004.
- L. Sigal, M. Isard, H. W. Haussecker, and M. J. Black. Loose-limbed People: Estimating 3D Human Pose and Mo- tion Using Non-parametric Belief Propagation. IJCV, 2012.
- C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Dis- criminative Density Propagation for 3D Human Motion Es- timation. In CVPR, 2005.
- C. Sminchisescu and B. Triggs. Covariance Scaled Sampling for Monocular 3D Body Tracking. In CVPR, 2001.
- G. W. Taylor, L. Sigal, D. J. Fleet, and G. E. Hinton. Dy- namical binary latent variable models for 3D human pose tracking. In CVPR, 2010.
- R. Urtasun and T. Darrell. Sparse Probabilistic Regression for Activity-Independent Human Pose Inference. In CVPR, 2008.
- R. Urtasun, D. Fleet, and P. Fua. 3D People Tracking with Gaussian Process Dynamical Models. In CVPR, 2006.
- D. Weinland, M. Ozuysal, and P. Fua. Making Action Recog- nition Robust to Occlusions and Viewpoint Changes. In ECCV, September 2010.
- F. Zhou and F. D. la Torre. Spatio-Temporal Matching for Human Detection in Video. In ECCV, 2014.
- S. Zuffi, J. Romero, C. Schmid, and M. J. Black. Estimating Human Pose with Flowing Puppets. In ICCV, 2013.