Predicting People's 3D Poses from Short Sequences (original) (raw)
Related papers
Robust Estimation of 3D Human Poses from a Single Image
2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014
Human pose estimation is a key step to action recognition. We propose a method of estimating 3D human poses from a single image, which works in conjunction with an existing 2D pose/joint detector. 3D pose estimation is challenging because multiple 3D poses may correspond to the same 2D pose after projection due to the lack of depth information. Moreover, current 2D pose estimators are usually inaccurate which may cause errors in the 3D estimation. We address the challenges in three ways: (i) We represent a 3D pose as a linear combination of a sparse set of bases learned from 3D human skeletons. (ii) We enforce limb length constraints to eliminate anthropomorphically implausible skeletons. (iii) We estimate a 3D pose by minimizing the L 1 -norm error between the projection of the 3D pose and the corresponding 2D detection. The L 1 -norm loss term is robust to inaccurate 2D joint estimations. We use the alternating direction method (ADM) to solve the optimization problem efficiently. Our approach outperforms the state-of-the-arts on three benchmark datasets.
A Spatial-temporal 3D Human Pose Reconstruction Framework
J. Inf. Process. Syst., 2019
3D human pose reconstruction from single-view camera is a difficult and challenging topic. Many approaches have been proposed, but almost focusing on frame-by-frame independently while inter-frames are highly correlated in a pose sequence. In contrast, we introduce a novel spatial-temporal 3D reconstruction framework that leverages both intra and inter frame relationships in consecutive 2D pose sequences. Orthogonal Matching Pursuit (OMP) algorithm, pre-trained Pose-angle Limits and Temporal Models have been implemented. We quantitatively compare our framework versus recent works on CMU motion capture dataset and Vietnamese traditional dance sequences. Our method outperforms others with 10 percent lower of Euclidean reconstruction error and robustness against Gaussian noise. Additionally, it is also important to mention that our reconstructed 3D pose sequences are smoother and more natural than others.
Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
This paper addresses the challenge of 3D full-body human pose estimation from a monocular image sequence. Here, two cases are considered: (i) the image locations of the human joints are provided and (ii) the image locations of joints are unknown. In the former case, a novel approach is introduced that integrates a sparsity-driven 3D geometric prior and temporal smoothness. In the latter case, the former case is extended by treating the image locations of the joints as latent variables to take into account considerable uncertainties in 2D joint locations. A deep fully convolutional network is trained to predict the uncertainty maps of the 2D joint locations. The 3D pose estimates are realized via an Expectation-Maximization algorithm over the entire sequence, where it is shown that the 2D joint location uncertainties can be conveniently marginalized out during inference. Empirical evaluation on the Human3.6M dataset shows that the proposed approaches achieve greater 3D pose estimation accuracy over state-of-the-art baselines. Further, the proposed approach outperforms a publicly available 2D pose estimation baseline on the challenging PennAction dataset.
Predicting 3D People from 2D Pictures
Lecture Notes in Computer Science, 2006
We propose a hierarchical process for inferring the 3D pose of a person from monocular images. First we infer a learned view-based 2D body model from a single image using non-parametric belief propagation. This approach integrates information from bottom-up body-part proposal processes and deals with self-occlusion to compute distributions over limb poses. Then, we exploit a learned Mixture of Experts model to infer a distribution of 3D poses conditioned on 2D poses. This approach is more general than recent work on inferring 3D pose directly from silhouettes since the 2D body model provides a richer representation that includes the 2D joint angles and the poses of limbs that may be unobserved in the silhouette. We demonstrate the method in a laboratory setting where we evaluate the accuracy of the 3D poses against ground truth data. We also estimate 3D body pose in a monocular image sequence. The resulting 3D estimates are sufficiently accurate to serve as proposals for the Bayesian inference of 3D human motion over time.
A Simple Yet Effective Baseline for 3d Human Pose Estimation
2017 IEEE International Conference on Computer Vision (ICCV), 2017
Following the success of deep convolutional networks, state-of-the-art methods for 3d human pose estimation have focused on deep end-to-end systems that predict 3d joint locations given raw image pixels. Despite their excellent performance, it is often not easy to understand whether their remaining error stems from a limited 2d pose (visual) understanding, or from a failure to map 2d poses into 3dimensional positions. With the goal of understanding these sources of error, we set out to build a system that given 2d joint locations predicts 3d positions. Much to our surprise, we have found that, with current technology, "lifting" ground truth 2d joint locations to 3d space is a task that can be solved with a remarkably low error rate: a relatively simple deep feedforward network outperforms the best reported result by about 30% on Human3.6M, the largest publicly available 3d pose estimation benchmark. Furthermore, training our system on the output of an off-the-shelf state-of-the-art 2d detector (i.e., using images as input) yields state of the art results-this includes an array of systems that have been trained end-to-end specifically for this task. Our results indicate that a large portion of the error of modern deep 3d pose estimation systems stems from their visual analysis, and suggests directions to further advance the state of the art in 3d human pose estimation.
Structured Prediction of 3D Human Pose with Deep Neural Networks
Procedings of the British Machine Vision Conference 2016, 2016
Most recent approaches to monocular 3D pose estimation rely on Deep Learning. They either train a Convolutional Neural Network to directly regress from image to 3D pose, which ignores the dependencies between human joints, or model these dependencies via a max-margin structured learning framework, which involves a high computational cost at inference time. In this paper, we introduce a Deep Learning regression architecture for structured prediction of 3D human pose from monocular images that relies on an overcomplete auto-encoder to learn a high-dimensional latent pose representation and account for joint dependencies. We demonstrate that our approach outperforms state-of-the-art ones both in terms of structure preservation and prediction accuracy.
ArXiv, 2018
Although significant advances have been made in the area of human poses estimation from images using deep Convolutional Neural Network (ConvNet), it remains a big challenge to perform 3D pose inference in-the-wild. This is due to the difficulty to obtain 3D pose groundtruth for outdoor environments. In this paper, we propose a novel framework to tackle this problem by exploiting the information of each bone indicating if it is forward or backward with respect to the view of the camera(we term it Forwardor-Backward Information abbreviated as FBI). Our method firstly trains a ConvNet with two branches which maps an image of a human to both the 2D joint locations and the FBI of bones. These information is further fed into a deep regression network to predict the 3D positions of joints. To support the training, we also develop an annotation user interface and labeled such FBI for around 12K in-the-wild images which are randomly selected from MPII (a public dataset of 2D pose annotation)...
Learning Monocular 3D Human Pose Estimation from Multi-view Images
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exists. Manual annotation is tedious, slow, and error-prone. In this paper, we propose to replace most of the annotations by the use of multiple views, at training time only. Specifically, we train the system to predict the same pose in all views. Such a consistency constraint is necessary but not sufficient to predict accurate poses. We therefore complement it with a supervised loss aiming to predict the correct pose in a small set of labeled images, and with a regularization term that penalizes drift from initial predictions. Furthermore, we propose a method to estimate camera pose jointly with human pose, which lets us utilize multiview footage where calibration is difficult, e.g., for pan-tilt or moving handheld cameras. We demonstrate the effectiveness of our approach on established benchmarks, as well as on a new Ski dataset with rotating cameras and expert ski motion, for which annotations are truly hard to obtain.
3D human pose estimation from depth maps using a deep combination of poses
Journal of Visual Communication and Image Representation
Many real-world applications require the estimation of human body joints for higher-level tasks as, for example, human behaviour understanding. In recent years, depth sensors have become a popular approach to obtain three-dimensional information. The depth maps generated by these sensors provide information that can be employed to disambiguate the poses observed in two-dimensional images. This work addresses the problem of 3D human pose estimation from depth maps employing a Deep Learning approach. We propose a model, named Deep Depth Pose (DDP), which receives a depth map containing a person and a set of predefined 3D prototype poses and returns the 3D position of the body joints of the person. In particular, DDP is defined as a ConvNet that computes the specific weights needed to linearly combine the prototypes for the given input. We have thoroughly evaluated DDP on the challenging 'ITOP' and 'UBC3V' datasets, which respectively depict realistic and synthetic samples, defining a new state-of-the-art on them.
arXiv (Cornell University), 2019
In this paper, we propose a new single shot method for multi-person 3D human pose estimation in complex images. The model jointly learns to locate the human joints in the image, to estimate their 3D coordinates and to group these predictions into full human skeletons. The proposed method deals with a variable number of people and does not need bounding boxes to estimate the 3D poses. It leverages and extends the Stacked Hourglass Network and its multiscale feature learning to manage multi-person situations. Thus, we exploit a robust 3D human pose formulation to fully describe several 3D human poses even in case of strong occlusions or crops. Then, joint grouping and human pose estimation for an arbitrary number of people are performed using the associative embedding method. Our approach significantly outperforms the state of the art on the challenging CMU Panoptic. Furthermore, it leads to good results on the complex and synthetic images from the newly proposed JTA Dataset.