Photocontrol of anthocyanin synthesis in tomato seedlings: a genetic approach (original) (raw)
1989, Photochemistry and Photobiology
The photocontrol of anthocyanin synthesis in dark-grown seedlings of tomato (Lycopersicon esculentum Mill.) has been studied in an aurea (au) mutant which is deficient in the labile type of phytochrome, a high pigment (hp) mutant which has the wild-type level of phytochrome and the double mutant au/hp, as well as the wild type. The hp mutant demonstrates phytochrome control of anthocyanin synthesis in response to a single red light (RL) pulse, whereas there is no measurable response in the wild type and au mutant. After pretreatment with 12 h blue light (BL) the phytochrome regulation of anthocyanin synthesis is 10-fold higher in the hp mutant than in the wild type, whilst no anthocyanin is detectable in the au mutant, thus suggesting that it is the labile pool of phytochrome which regulates anthocyanin synthesis. The au/hp double mutant exhibits a small (3% of that in the hp mutant) RL/far-red light (FR)-reversible regulation of anthocyanin synthesis following a BL pretreatment. It is proposed that the hp mutant is hypersensitive to the FR-absorbing form of phytochrome (Pfr) and that this (hypersensitivity) establishes response to the low level of Pfl. (below detection limits in phytochrome assays) in the au/hp double mutant.