The Parkinson's disease-related genes act in mitochondrial homeostasis (original) (raw)

Mitochondrial homeostasis molecules: regulation by a trio of recessive Parkinson's disease genes

Experimental neurobiology, 2014

Mitochondria are small organelles that produce the majority of cellular energy as ATP. Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD), and rare familial forms of PD provide valuable insight into the pathogenic mechanism underlying mitochondrial impairment, even though the majority of PD cases are sporadic. The regulation of mitochondria is crucial for the maintenance of energy-demanding neuronal functions in the brain. Mitochondrial biogenesis and mitophagic degradation are the major regulatory pathways that preserve optimal mitochondrial content, structure and function. In this mini-review, we provide an overview of the mitochondrial quality control mechanisms, emphasizing regulatory molecules in mitophagy and biogenesis that specifically interact with the protein products of three major recessive familial PD genes, PINK1, Parkin and DJ-1.

Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria?

Genes, Brain and Behavior, 2008

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research (a-synuclein, parkin, PINK1, DJ-1, LRRK2 and HTRA2) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.

Mitochondrial Biology and Parkinson's Disease

Cold Spring Harbor Perspectives in Medicine, 2011

Mitochondria are highly dynamic organelles with complex structural features which play several important cellular functions, such as the production of energy by oxidative phosphorylation, the regulation of calcium homeostasis, or the control of programmed cell death (PCD). Given its essential role in neuronal viability, alterations in mitochondrial biology can lead to neuron dysfunction and cell death. Defects in mitochondrial respiration have long been implicated in the etiology and pathogenesis of Parkinson's disease (PD). However, the role of mitochondria in PD extends well beyond defective respiration and also involves perturbations in mitochondrial dynamics, leading to alterations in mitochondrial morphology, intracellular trafficking, or quality control. Whether a primary or secondary event, mitochondrial dysfunction holds promise as a potential therapeutic target to halt the progression of dopaminergic neurodegeneration in PD.

Mitochondrial dynamics in Parkinson's disease

Experimental Neurology, 2009

The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinson's disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events.

Mitochondrial alterations in Parkinson’s disease: new clues

Journal of Neurochemistry, 2008

Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). In particular, complex I impairment and subsequent oxidative stress have been widely demonstrated in experimental models of PD and in post-mortem PD samples. A recent wave of new studies is providing novel clues to the potential involvement of mitochondria in PD. In particular, (i) mitochondria-dependent programmed cell death pathways have been shown to be critical to PD-related dopaminergic neurodegeneration, (ii) many disease-causing proteins associated with familial forms of PD have been demonstrated to interact either directly or indirectly with mitochondria, (iii) aging-related mitochondrial changes, such as alterations in mitochondrial DNA, are increasingly being associated with PD, and (iv) anomalies in mitochondrial dynamics and intra-neuronal distribution are emerging as critical participants in the pathogenesis of PD. These new findings are revitalizing the field and reinforcing the potential role of mitochondria in the pathogenesis of PD. Whether a primary or secondary event, or part of a multifactorial pathogenic process, mitochondrial dysfunction remains at the forefront of PD research and holds the promise as a potential molecular target for the development of new therapeutic strategies for this devastating, currently incurable, disease.

Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics

Human Molecular Genetics, 2010

Growing evidence highlights a role for mitochondrial dysfunction and oxidative stress as underlying contributors to Parkinson's disease (PD) pathogenesis. DJ-1 (PARK7) is a recently identified recessive familial PD gene. Its loss leads to increased susceptibility of neurons to oxidative stress and death. However, its mechanism of action is not fully understood. Presently, we report that DJ-1 deficiency in cell lines, cultured neurons, mouse brain and lymphoblast cells derived from DJ-1 patients display aberrant mitochondrial morphology. We also show that these DJ-1-dependent mitochondrial defects contribute to oxidative stress-induced sensitivity to cell death since reversal of this fragmented mitochondrial phenotype abrogates neuronal cell death. Reactive oxygen species (ROS) appear to play a critical role in the observed defects, as ROS scavengers rescue the phenotype and mitochondria isolated from DJ-1 deficient animals produce more ROS compared with control. Importantly, the aberrant mitochondrial phenotype can be rescued by the expression of Pink1 and Parkin, two PD-linked genes involved in regulating mitochondrial dynamics and quality control. Finally, we show that DJ-1 deficiency leads to altered autophagy in murine and human cells. Our findings define a mechanism by which the DJ-1-dependent mitochondrial defects contribute to the increased sensitivity to oxidative stress-induced cell death that has been previously reported.

Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis

2009

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis.

Disruption of Mitochondrial Homeostasis: The Role of PINK1 in Parkinson’s Disease

Cells

The progressive reduction of the dopaminergic neurons of the substantia nigra is the fundamental process underlying Parkinson’s disease (PD), while the mechanism of susceptibility of this specific neuronal population is largely unclear. Disturbances in mitochondrial function have been recognized as one of the main pathways in sporadic PD since the finding of respiratory chain impairment in animal models of PD. Studies on genetic forms of PD have provided new insight on the role of mitochondrial bioenergetics, homeostasis, and autophagy. PINK1 (PTEN-induced putative kinase 1) gene mutations, although rare, are the second most common cause of recessively inherited early-onset PD, after Parkin gene mutations. Our knowledge of PINK1 and Parkin function has increased dramatically in the last years, with the discovery that a process called mitophagy, which plays a key role in the maintenance of mitochondrial health, is mediated by the PINK1/Parkin pathway. In vitro and in vivo models have...

Mitochondrial dysfunction in parkinson's disease

Annals of Neurology, 1998

The review highlights mitochondrial structural and functional abnormalities in Parkinson's dis ease and experimental animal models of this pathology. Special attention is paid to the inactivation of mito chondrial enzymes, mutations in mitochondrial and nuclear DNA, and genomic and proteomic studies of mitochondrial proteins in Parkinson's disease and experimental parkinsonism in animals.