A deforestation-induced tipping point for the South American monsoon system (original) (raw)
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback. Many studies have suggested that the Amazon rainforest may be a potential tipping element of the earth system 1,2. Results of several coupled global climate models have indicated the possibility of a future dieback of the rainforest under global warming scenarios 3,4 , but also ongoing deforestation has been discussed as a possible cause of a regime shift of the ecosystem 5–12. Here, we propose a model of the nonlinear couplings between the atmospheric moisture transport over South America and the Amazon rainforest, which are associated with a westward cascade of precipitation and evapotranspiration. Impacts of ongoing deforestation on the South American low-level circulation will be analyzed with particular focus on a positive atmospheric feedback induced by condensational latent heat release over the Amazon 13–15 , which is neglected in most studies investigating the consequences of deforestation on the resilience of the Amazonian rainforest. Rainfall in vast parts of South America critically depends on the atmospheric moisture inflow from the tropical Atlantic ocean. After crossing the Amazon basin, these moist low-level winds are blocked by the Andes mountains to the west and channelled southwards, forming a low-level jet from the western Amazon basin to the subtropics, for which it is the most important moisture source 16. Due to the release of latent heat (LH), precipitation over tropical South America strengthens the atmospheric heating gradient between the Atlantic ocean and the continent, and thereby enhances the low-level atmospheric inflow into the Amazon basin. This heating gradient can be estimated to enhance the easterly inflow into South America by a factor between 2 and 3 during the monsoon season (December–February) 13–15. The Amazon rain-forest's evapotranspiration (E) recharges the low-level atmosphere's moisture content, resulting in additional moisture being available for precipitation (P) further downstream of the westward flow. In turn, high P rates and the associated condensational heating are crucial for the existence of the rainforest itself, and thus for maintaining high E rates in the long term. Due to these feedback mechanisms, widespread deforestation does not only impact the ecosystem locally, but may cause nonlinear responses of the atmospheric circulation regime, and