A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli (original) (raw)

A Conserved Glutamate Residue Exhibits Multifunctional Catalytic Roles in D-Fructose-1,6-bisphosphate Aldolases

Journal of Biological Chemistry, 2002

The aldolase catalytic cycle consists of a number of proton transfers that interconvert covalent enzyme in- termediates. Glu-187 is a conserved amino acid that is located in the mammalian fructose-1,6-bisphosphate al- dolase active site. Its central location, within hydrogen bonding distance of three other conserved active site residues: Lys-146, Glu-189, and Schiff base-forming Lys- 229, makes it an ideal candidate

Snapshots of Catalysis: the Structure of Fructose-1,6-(bis)phosphate Aldolase Covalently Bound to the Substrate Dihydroxyacetone Phosphate † , ‡

Biochemistry, 2001

Fructose-1,6-bis(phosphate) aldolase is an essential glycolytic enzyme found in all vertebrates and higher plants that catalyzes the cleavage of fructose 1,6-bis(phosphate) (Fru-1,6-P 2 ) to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The structure of the aldolase-DHAP Schiff base has been determined by X-ray crystallography to 2.6 Å resolution (R cryst ) 0.213, R free ) 0.249) by trapping the catalytic intermediate with NaBH 4 in the presence of Fru-1,6-P 2 . This is the first structure of a trapped covalent intermediate for this essential glycolytic enzyme. The structure allows the elucidation of a comprehensive catalytic mechanism and identification of a conserved chemical motif in Schiff-base aldolases. The position of the bound DHAP relative to Asp33 is consistent with a role for Asp33 in deprotonation of the C4-hydroxyl leading to C-C bond cleavage. The methyl side chain of Ala31 is positioned directly opposite the C3-hydroxyl, sterically favoring the S-configuration of the substrate at this carbon. The "trigger" residue Arg303, which binds the substrate C6-phosphate group, is a ligand to the phosphate group of DHAP. The observed movement of the ligand between substrate and product phosphates may provide a structural link between the substrate cleavage and the conformational change in the C-terminus associated with product release. The position of Glu187 in relation to the DHAP Schiff base is consistent with a role for the residue in protonation of the hydroxyl group of the carbinolamine in the dehydration step, catalyzing Schiff-base formation. The overlay of the aldolase-DHAP structure with that of the covalent enzyme-dihydroxyacetone structure of the mechanistically similar transaldolase and KDPG aldolase allows the identification of a conserved Lys-Glu dyad involved in Schiff-base formation and breakdown. The overlay highlights the fact that Lys146 in aldolase is replaced in transaldolase with Asn35. The substitution in transaldolase stabilizes the enamine intermediate required for the attack of the second aldose substrate, changing the chemistry from aldolase to transaldolase.

Structural Insights into the Substrate Binding and Stereoselectivity of Giardia Fructose-1,6-bisphosphate Aldolase

Biochemistry, 2009

Giardia lamblia fructose-1,6-bisphosphate aldolase (FBPA)1 is a member of the Class II zincdependent aldolase family that catalyzes the cleavage of D-fructose-1,6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (G3P). In addition to the active site zinc, the catalytic apparatus of FBPA employs an aspartic acid, Asp83 in the G. lamblia enzyme, which when replaced by an alanine residue renders the enzyme inactive. A comparison of the crystal structures of the D83A FBPA in complex with FBP and of the wild-type FBPA in the unbound state revealed a substrate induced conformational transition of loops in the vicinity of the active site and a shift in the location of Zn 2+. Upon FBP binding, the Zn 2+ shifts up to 4.6 Å towards the catalytic Asp83, which brings the metal within coordination distance to the Asp83 carboxylate group. In addition, the structure of wild-type FBPA was determined in complex with the competitive inhibitor D-tagatose 1,6-bisphosphate (TBP), a FBP stereoisomer. In this structure, the zinc binds in a site close to that previously seen in the structure of FBPA in complex with phosphoglycolohydroxamate, an analog of the postulated DHAP ene-diolate intermediate. Together, the ensemble of structures suggests that the zinc mobility is necessary to orient the Asp83 side chain and to polarize the substrate for proton transfer from the FBP C(4) hydroxyl group to the Asp83 carboxyl group. In the absence of FBP, the alternative zinc position is too remote for coordinating the Asp83. We propose a modification of the catalytic mechanism that incorporates the novel features observed in the FBPA/FBP structure. The mechanism invokes coordination and co-planarity of the Zn 2+ with the FBP's O-C(3)-C(4)-O concomitant with coordination of Asp83 carboxylic group. Catalysis is accompanied by movement of Zn 2+ to a site co-planar with the O-C(2)-C(3)-O of the DHAP. glFBPA exhibit strict substrate specificity towards FBP and does not cleave TBP. The active sites of FBPAs contain an aspartate residue equivalent to Asp255 of glFBPA, whereas tagatose-1,6bisphosphate aldolase contains an alanine in this position. We and others hypothesized that this aspartic acid is a likely determinant of FBP vs. TBP specificity. Replacement of Asp255 by an alanine resulted in an enzyme that possesses double specificity, now cleaving TBP (albeit with low efficacy; k cat /K m = 80 M −1 s −1) while maintaining activity towards FBP at 50-fold lower catalytic efficacy

The crystal structure of Escherichia coli class II fructose-1,6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity

Journal of Molecular Biology, 1999

The structure of a class II fructose-1,6-bisphosphate aldolase in complex with the substrate analogue and inhibitor phosphoglycolohydroxamate (PGH) has been determined using X-ray diffraction terms to a resolution of 2.0 A Ê (1 A Ê 0.1 nm). The crystals are trigonal, space group P3 1 21 with a b 78.24 A Ê , c 289.69 A Ê . The asymmetric unit is a homodimer of (a/b) 8 barrels and the model has re®ned to give R-work 19.2 %, R-free (based on 5 % of the data) 23.0 %. PGH resembles the ene-diolate transition state of the physiological substrate dihydroxyacetone phosphate. It is well ordered and bound in a deep polar cavity at the C-terminal end of the (a/b) 8 barrel, where it chelates the catalytic zinc ion using hydroxyl and enolate oxygen atoms. Trigonal bipyramidal coordination of the zinc ion is completed by three histidine residues. The complex network of hydrogen bonds at the catalytic centre is required to organise the position of key functional groups and metal ion ligands. A well-de®ned monovalent cation-binding site is observed following signi®cant re-organisation of loop structures. This assists the formation of a phosphate-binding site on one side of the barrel that tethers PGH in the catalytic site. The positions of functional groups of substrate and putative interactions with key amino acid residues are identi®ed. Knowledge of the complex structure complements the results of spectroscopic and sitedirected mutagenesis studies, and contributes to our understanding of the mechanism and substrate speci®city of this family of enzymes. A reaction mechanism distinct from that proposed for other class II aldolases is discussed. The results suggest that the class II aldolases should be sub-divided into two groups on the basis of both distinct folds and mechanism.

Thermodynamic Analysis Shows Conformational Coupling and Dynamics Confer Substrate Specificity in Fructose-1,6-bisphosphate Aldolase †

Biochemistry, 2007

Conformational flexibility is emerging as a central theme in enzyme catalysis. Thus, identifying and characterizing enzyme dynamics is critical for understanding catalytic mechanisms. Herein, coupling analysis, which uses thermodynamic analysis to assess cooperativity/coupling between distal regions on an enzyme, is used to interrogate substrate specificity among fructose-1,6-(bis)phosphate aldolase (aldolase) isozymes. Aldolase exists as three isozymes, A, B, and C distinguishable by their unique substrate preferences despite the fact that the structures of the active sites of the three isozymes are nearly identical. While conformational flexibility has been observed in aldolase A, its function in the catalytic reaction of aldolase has not been demonstrated. To explore the role of conformational dynamics in substrate specificity, those residues associated with isozyme specificity (ISRs) were swapped and the resulting chimeras were subjected to steady-state kinetics. Thermodynamic analyses suggest cooperativity between a terminal surface patch (TSP) and a distal surface patch (DSP) of ISRs that are separated by >8.9Å. Notably, the coupling energy (ΔG I ) is anti-correlated with respect to the two substrates, fructose 1,6-bisphosphate and fructose 1-phosphate. The difference in coupling energy with respect to these two substrates accounts for about 70% of the energy difference for the ratio of k cat /K m for the two substrates between aldolase A and aldolase B. These non-additive mutational effects between the TSP and DSP provide functional evidence that coupling interactions arising from conformational flexibility during catalysis are a major determinant of substrate specificity.

Replacement of a Phenylalanine by a Tyrosine in the Active Site Confers Fructose-6-phosphate Aldolase Activity to the Transaldolase of Escherichia coli and Human Origin

Journal of Biological Chemistry, 2008

Based on a structure-assisted sequence alignment we designed 11 focused libraries at residues in the active site of transaldolase B from Escherichia coli and screened them for their ability to synthesize fructose 6-phosphate from dihydroxyacetone and glyceraldehyde 3-phosphate using a newly developed color assay. We found one positive variant exhibiting a replacement of Phe 178 to Tyr. This mutant variant is able not only to transfer a dihydroxyacetone moiety from a ketose donor, fructose 6-phosphate, onto an aldehyde acceptor, erythrose 4-phosphate (14 units/mg), but to use it as a substrate directly in an aldolase reaction (7 units/mg). With a single amino acid replacement the fructose-6-phosphate aldolase activity was increased considerably (>70-fold compared with wild-type). Structural studies of the wild-type and mutant protein suggest that this is due to a different H-bond pattern in the active site leading to a destabilization of the Schiff base intermediate. Furthermore, we show that a homologous replacement has a similar effect in the human transaldolase Taldo1 (aldolase activity, 14 units/mg). We also demonstrate that both enzymes TalB and Taldo1 are recognized by the same polyclonal antibody.

Identification of arginine 331 as an important active site residue in the Class II fructose-1,6-bisphosphate aldolase ofEscherichia coli

Protein Science, 2008

Treatment of the Class 11 fructose-1.6-bisphosphate aldolase of Escherichia coli with the arginine-specific a-dicarbonyl reagents, butanedione or phenylglyoxal, results in inactivation of the enzyme. The enzyme is protected from inactivation by the substrate, fructose 1,6-bisphosphate, or by inorganic phosphate. Modification with [7-"C] phenylglyoxal in the absence of substrate demonstrates that enzyme activity is abolished by the incorporation of approximately 2 moles of reagent per mole of enzyme. Sequence alignment of the eight known Class I1 FBP-aldolases shows that only one arginine residue is conserved in all the known sequences. This residue, Arg-331, was mutated to either alanine or glutamic acid. The mutant enzymes were much less susceptible to inactivation by phenylglyoxal. Measurement of the steady-state kinetic parameters revealed that mutation of Arg-331 dramatically increased the K,,, for fructose 1.6-bisphosphate. Comparatively small differences in the inhibitor constant K, for dihydroxyacetone phosphate or its analogue, 2-phosphoglycolate, were found between the wild-type and mutant enzymes. In contrast, the mutation caused large changes in the kinetic parameters when glyceraldehyde 3-phosphate was used as an inhibitor. Kinetic analysis of the oxidation of the carbanionic aldolase-substrate intermediate of the reaction by hexacyanoferrate (111) revealed that the K , for dihydroxyacetone phosphate was again unaffected, whereas that for fructose 1,6-bisphosphate was dramatically increased. Taken together, these results show that Arg-331 is critically involved in the binding of fructose bisphosphate by the enzyme and demonstrate that it interacts with the C-6 phosphate group of the substrate.

Carbamoyl Phosphate Synthetase: Caught in the Act of Glutamine Hydrolysis † , ‡

Biochemistry, 1998

Carbamoyl phosphate synthetase from Escherichia coli catalyzes the production of carbamoyl phosphate from two molecules of Mg 2+ ATP, one molecule of bicarbonate, and one molecule of glutamine. The enzyme consists of two polypeptide chains referred to as the large and small subunits. While the large subunit provides the active sites responsible for the binding of nucleotides and other effector ligands, the small subunit contains those amino acid residues that catalyze the hydrolysis of glutamine to glutamate and ammonia. From both amino acid sequence analyses and structural studies it is now known that the small subunit belongs to the class I amidotransferase family of enzymes. Numerous biochemical studies have suggested that the reaction mechanism of the small subunit proceeds through the formation of the glutamyl thioester intermediate and that both Cys 269 and His 353 are critical for catalysis. Here we describe the X-ray crystallographic structure of carbamoyl phosphate synthetase from E. coli in which His 353 has been replaced with an asparagine residue. Crystals employed in the investigation were grown in the presence of glutamine, and the model has been refined to a crystallographic R-factor of 19.1% for all measured X-ray data from 30 to 1.8 Å resolution. The active site of the small subunit clearly contains a covalently bound thioester intermediate at Cys 269, and indeed, this investigation provides the first direct structural observation of an enzyme intermediate in the amidotransferase family. † This research was supported in part by grants from the NIH (GM55513 to H.M.H. and DK30343 to F.M.R.) and the NSF (BIR-9317398 shared instrumentation grant). ‡ X-ray coordinates have been deposited in the Brookhaven Protein Data Bank (entry 1A9X) and will be released upon publication.

Deconstruction of the Catalytic Array within the Amidotransferase Subunit of Carbamoyl Phosphate Synthetase †

Biochemistry, 1999

Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit, and a small amidotransferase subunit, which belongs to the Triad family of glutamine amidotransferases. Previous studies have established that the reaction mechanism of the small subunit proceeds through the formation of a γ-glutamyl thioester with Cys-269. The roles in the hydrolysis of glutamine played by the conserved residues, Glu-355, Ser-47, Lys-202, and Gln-273, were determined by mutagenesis. In the X-ray crystal structure of the mutant, Ser-47 and Gln-273 interact with the γ-glutamyl thioester intermediate [Thoden, J. B., Miran, S. G., Phillips, J. C., Howard, A. J., Raushel, F. M., and Holden, H. M. (1998) Biochemistry 37, 8825-8831].

Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis

Biochemistry, 2013

Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation−deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI-and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA−PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation−protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.