SOLUTION OF INTEGER LINEAR PROGRAMMING PROBLEMS WITH TRIANGULAR FUZZY NUMBERS (original) (raw)
Related papers
Fuzzy integer linear programming problems
International Journal of Contemporary Mathematical Sciences, 2007
In this paper, the fuzzy integer linear programming problem (FILP) is considered. This problem is reduced to crisp integer linear programming problem. This transformation is performed by the related theorems and lemmas. The solution of FILP is obtained by the solutions of ILP's. Finally the method is illustrated by two numerical examples.
Fuzzy Integer Linear Programming with Fuzzy Decision Variables
In this paper a new method for dealing with Fuzzy Integer Linear Programming Problems (FILPP) has been proposed. FILPP with fuzzy variables model was taken for solution. This solution method is based on the fuzzy ranking method. The proposed method can serve deci-sion makers by providing the reasonable range of values for the fuzzy variable, which is comparatively better than the currently available solu-tions. Numerical examples demonstrate the effectiveness and accuracy of the proposed method.
Three models of fuzzy integer linear programming
1995
In this paper we study some models for dealing with Fuzzy Integer Linear Programming problems which have a certain lack of precision of a vague nature in their formulation. We present methods to solve them with either fuzzy constraints, or fuzzy numbers in the objective function or fuzzy numbers defining the set of constraints. These methods are based on the representation theorem and on fuzzy number ranking methods.
Study of Fuzzy Integer Linear Programming Problems (IFLPP) and Simplex Method
International Journal of Scientific Research in Science and Technology, 2023
In this paper, a new method is proposed to find the fuzzy optimal solution of fully fuzzy linear programming problems with triangular fuzzy numbers. A computational method for solving fully fuzzy linear programming problems (FFLPP) is proposed, based upon the new Ranking function. The proposed method is very easy to understand and to apply for fully fuzzy linear programming problems occurring in real life situations as compared to the existing methods. To illustrate the proposed method numerical examples are solved.
Mathematics, 2021
Recently, new methods have been recommended to solve fully fuzzy linear programming (FFLP) issues. Likewise, the present study examines a new approach to solve FFLP issues through fuzzy decision parameters and variables using triangular fuzzy numbers. The strategy, which is based on alpha-cut theory and modified triangular fuzzy numbers, is suggested to obtain the optimal fully fuzzy solution for real-world problems. In this method, the problem is considered as a fully fuzzy problem and then is solved by applying the new definition presented for the triangular fuzzy number to optimize decision variables and the objective function. Several numerical examples are solved to illustrate the above method.
A new operation on triangular fuzzy number for solving fuzzy linear programming problem
2012
The fuzzy set theory has been applied in many fields such as operation research, control theory and management sciences etc. The fuzzy numbers and fuzzy values are widely used in engineering applications because of their suitability for representing uncertain information. In standard fuzzy arithmetic operations we have some problem in subtraction and division operations. In this paper, a new operation on Triangular Fuzzy Numbers is defined, where the method of subtraction and division has been modified. These modified operators yield the exact inverse of the addition and multiplication operators.
Linear programming problems with some multi-choice fuzzy parameters
Yugoslav Journal of Operations Research, 2018
In this paper, we consider some Multi-choice linear programming (MCLP) problems where the alternative values of the multi-choice parameters are fuzzy numbers. There are some real-life situations where we need to choose a value for a parameter from a set of different choices to optimize our objective, and those values of the parameters can be imprecise or fuzzy. We formulate these situations as a mathematical model by using some fuzzy numbers for the alternatives. A defuzzification method based on incentre point of a triangle has been used to find the defuzzified values of the fuzzy numbers. We determine an equivalent crisp multi-choice linear programming model. To tackle the multi-choice parameters, we use Lagranges interpolating polynomials. Then, we establish a transformed mixed integer nonlinear programming problem. By solving the transformed non-linear programming model, we obtain the optimal solution for the original problem. Finally, two numerical examples are presented to dem...
Ibn AL-Haitham Journal For Pure and Applied Sciences
Fuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking function (RF) approaches for solving fuzzy linear programming problems (FLPP) with a pentagonal fuzzy number (PFN) have been proposed, based on new ranking functions (N RF). The simplex method (SM) is very easy to understand. Finally, numerical examples (NE) are use...
Different strategies to solve fuzzy linear programming problems
2012
Fuzzy linear programming problems have an essential role in fuzzy modeling, which can formulate uncertainty in actual environment In this paper we present methods to solve (i) the fuzzy linear programming problem in which the coefficients of objective function are trapezoidal fuzzy numbers, the coefficients of the constraints, right hand side of the constraints are triangular fuzzy numbers, and (ii) the fuzzy linear programming problem in which the variables are trapezoidal fuzzy variables, the coefficients of objective function and right hand side of the constraints are trapezoidal fuzzy numbers, (iii) the fuzzy linear programming problem in which the coefficients of objective function, the coefficients of the constraints, right hand side of the constraints are triangular fuzzy numbers. Here we use α –cut and ranking functions for ordering the triangular fuzzy numbers and trapezoidal fuzzy numbers. Finally numerical examples are provided to illustrate the various methods of the fuz...