LIRICS Semantic Role Annotation: Design and Evaluation of a Set of Data Categories (original) (raw)
Related papers
Conceptual and representational choices in defining an ISO standard for semantic role annotation
This paper presents two elements of the ISO standard for semantic role annotation which is under development (ISO CD 24617-4:2013), namely (a) the metamodel, which describes the types of concepts that may occur in semantic role annotation and their conceptual relations, and (b) an annotation language for expressing semantic role annotations, with its abstract syntax, XML-based dconcrete syntax, and semantics.
Abstraction and Generalisation in Semantic Role Labels: PropBank, VerbNet or both
2009
Semantic role labels are the representation of the grammatically relevant aspects of a sentence meaning. Capturing the nature and the number of semantic roles in a sentence is therefore fundamental to correctly describing the interface between grammar and meaning. In this paper, we compare two annotation schemes, Prop-Bank and VerbNet, in a task-independent, general way, analysing how well they fare in capturing the linguistic generalisations that are known to hold for semantic role labels, and consequently how well they grammaticalise aspects of meaning. We show that VerbNet is more verb-specific and better able to generalise to new semantic role instances, while PropBank better captures some of the structural constraints among roles. We conclude that these two resources should be used together, as they are complementary.
Semantic role annotation: From verb-specific roles to generalized semantic roles
2010
This paper aims to present the semantic role annotation carried out on the ADESSE project, an online database with syntactic and semantic information for all the verbs and clauses in a corpus of Spanish. In ADESSE, several subsets of semantic roles have been taken into account, interrelated through different levels of generalization.
Abstraction and generalisation in semantic role labels
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1 - ACL-IJCNLP '09, 2009
Semantic role labels are the representation of the grammatically relevant aspects of a sentence meaning. Capturing the nature and the number of semantic roles in a sentence is therefore fundamental to correctly describing the interface between grammar and meaning. In this paper, we compare two annotation schemes, Prop-Bank and VerbNet, in a task-independent, general way, analysing how well they fare in capturing the linguistic generalisations that are known to hold for semantic role labels, and consequently how well they grammaticalise aspects of meaning. We show that VerbNet is more verb-specific and better able to generalise to new semantic role instances, while PropBank better captures some of the structural constraints among roles. We conclude that these two resources should be used together, as they are complementary.
Evaluating automatic cross-domain semantic role annotation
2012
abstract In this paper we present the first corpus where one million Dutch words from a variety of text genres have been annotated with semantic roles. 500K have been completely manually verified and used as training material to automatically label another 500K. All data has been annotated following an adapted version of the PropBank guidelines. The corpus's rich text type diversity and the availability of manually verified syntactic dependency structures allowed us to experiment with an existing semantic role labeler for Dutch.
A comparative study on generalization of semantic roles in FrameNet
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1 - ACL-IJCNLP '09, 2009
A number of studies have presented machine-learning approaches to semantic role labeling with availability of corpora such as FrameNet and PropBank. These corpora define the semantic roles of predicates for each frame independently. Thus, it is crucial for the machine-learning approach to generalize semantic roles across different frames, and to increase the size of training instances. This paper explores several criteria for generalizing semantic roles in FrameNet: role hierarchy, human-understandable descriptors of roles, semantic types of filler phrases, and mappings from FrameNet roles to thematic roles of VerbNet. We also propose feature functions that naturally combine and weight these criteria, based on the training data. The experimental result of the role classification shows 19.16% and 7.42% improvements in error reduction rate and macro-averaged F1 score, respectively. We also provide in-depth analyses of the proposed criteria.
Generalization of Semantic Roles in Automatic Semantic Role Labeling
Journal of Natural Language Processing, 2014
Numerous studies have applied machine-learning approaches to semantic role labeling with the availability of corpora such as FrameNet and PropBank. These corpora define frame-specific semantic roles for each frame, which are problematic for a machinelearning approach because the corpus contains a number of infrequent roles that hinder efficient learning. This paper focuses on the generalization problem of semantic roles in a semantic role labeling task. We compare existing generalization criteria with our novel criteria, and clarify the characteristics of each criterion. We also show that using multiple generalization criteria in a single model improves the performance of a semantic role classification. In experiments on FrameNet, we achieved 19.16% error reduction in terms of total accuracy, and 7.42% in macro-averaged F1. On PropBank, we reduced 24.07% of errors in total accuracy, and 26.39% of errors in the evaluation for unseen verbs.
The Proposition Bank: An Annotated Corpus of Semantic Roles
Computational Linguistics, 2005
The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicate-argument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent coreference, quantification, and many other higher-order phenomena, but also broad, in that it covers every instance of every verb in the corpus and allows representative statistics to be calculated.
Semantic Role Labeling: An Introduction to the Special Issue
Computational Linguistics, 2008
Semantic role labeling, the computational identification and labeling of arguments in text, has become a leading task in computational linguistics today. Although the issues for this task have been studied for decades, the availability of large resources and the development of statistical machine learning methods have heightened the amount of effort in this field. This special issue presents selected and representative work in the field. This overview describes linguistic background of the problem, the movement from linguistic theories to computational practice, the major resources that are being used, an overview of steps taken in computational systems, and a description of the key issues and results in semantic role labeling (as revealed in several international evaluations). We assess weaknesses in semantic role labeling and identify important challenges facing the field. Overall, the opportunities and the potential for useful further research in semantic role labeling are considerable.