The measurement of water scarcity: Defining a meaningful indicator (original) (raw)

Toward a formal definition of water scarcity in natural-human systems

Water Resources Research, 2013

1] Water scarcity may appear to be a simple concept, but it can be difficult to apply to complex natural-human systems. While aggregate scarcity indices are straightforward to compute, they do not adequately represent the spatial and temporal variations in water scarcity that arise from complex systems interactions. The uncertain effects of future climate change on water scarcity add to the need for clarity on the concept of water scarcity. Starting with a simple but robust definition-the marginal value of a unit of water wehighlight key aspects of water scarcity and illustrate its many biophysical and socioeconomic determinants. We make four central observations. First, water scarcity varies greatly across location, time, and a multitude of uses that are valued either directly or indirectly by society. Second, water scarcity is fundamentally a normative, anthropocentric concept and, thus, can and should be distinguished from the related, purely descriptive notion of water deficit. While such an anthropocentric perspective may seem limiting, it has the potential to encompass the vast range of interests that society has in water. Third, our ability to understand and anticipate changes in water scarcity requires distinguishing between the factors that affect the value or benefits of water from those affecting the costs of transforming water in space, time and form. Finally, this robust and rigorous definition of water scarcity will facilitate better communication and understanding for both policymakers and scientists.

A Pilot Global Assessment of Environmental Water Requirements and Scarcity

Water International, 2004

This paper presents a first attempt to estimate the volume of water required for the maintenance of freshwater-dependent ecosystems at the global scale. This total environmental water requirement consists of ecologically relevant low-flow and high-flow components and depends upon the objective of environmental water management. Both components are related to river flow variability and estimated by conceptual rules from discharge time series simulated by the global hydrology model. A water stress indicator is further defined, which shows what proportion of the utilizable water in world river basins is currently withdrawn for direct human use and where this use is in conflict with environmental water requirements. The paper presents an estimate of environmental water requirements for 128 major river basins and drainage regions of the world. It is shown that approximately 20 to 50 percent of the mean annual river flow in different basins needs to be allocated to freshwater-dependent ecosystems to maintain them in fair conditions. This is unlikely to be possible in many developing countries in Asia and North Africa, in parts of Australia, North America, and Europe, where current total direct water withdrawals (primarily for irrigation) already tap into the estimated environmental water requirements. Over 1.4 billion people currently live in river basins with high environmental water stress. This number will increase as water withdrawals grow and if environmental water allocations remain beyond the common practice in river basin management. This paper suggests that estimates of environmental water requirements should be the integral part of global water assessments and projections of global food production.

ARTICLE: Water Scarcity: An Alternative View and Its Implications for Policy and Capacity Building

Natural Resources Forum, 2003

This article focuses on the somewhat ambiguous concept of scarce water, or, more accurately stated, on the rather more ambiguous concept of scarcity. Still today, water scarcity in a region is defined largely in physical terms, typically gallons or cubic metres per capita if a stock or per capita-year if a flow. However useful purely physical measures may be for broad comparisons, they cannot adequately reflect the variety of ways in which human beings use water — neither to their wastefulness when water is perceived as abundant nor to their ingenuity when it is not. This article argues that water scarcity should be defined according to three orders of scarcity that require, respectively, physical, economic and social adaptations. It goes on to demonstrate that perceiving scarcity mainly in physical terms limits opportunities for policymaking and approaches for capacity building.

A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use

Hydrology and Earth System Sciences, 2013

A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socioeconomic scenarios of the Shared Socioeconomic Pathways (SSPs), which are a part of the latest set of scenarios on global change developed by the integrated assessment, the IAV (climate change impact, adaptation, and vulnerability assessment), and the climate modeling community. The SSPs depict five global situations based on substantially different socioeconomic conditions during the 21st century. Water use scenarios were developed to reflect not only quantitative socioeconomic factors, such as population and electricity production, but also key qualitative concepts such as the degree of technological change and overall environmental consciousness. Each scenario consists of five factors: irrigated area, crop intensity, irrigation efficiency, and withdrawal-based potential industrial and municipal water demands. The first three factors are used to estimate the potential irrigation water demand. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5 • × 0.5 • and cover the whole 21st century in five-year intervals. Each factor shows wide variation among the different global situations depicted: the irrigated area in 2085 varies between 2.7 × 10 6 and 4.5 × 10 6 km 2 , withdrawal-based potential industrial water demand between 246 and 1714 km 3 yr −1 , and municipal water between 573 and 1280 km 3 yr −1. The water use scenarios can be used for global water scarcity assessments that identify the regions vulnerable to water scarcity and analyze the timing and magnitude of scarcity conditions.

Entering an Era of Water Scarcity: The Challenges Ahead

Ecological Applications, 2000

Fresh water is a renewable resource, but it is also finite. Around the world, there are now numerous signs that human water use exceeds sustainable levels. Groundwater depletion, low or nonexistent river flows, and worsening pollution levels are among the more obvious indicators of water stress. In many areas, extracting more water for human uses jeopardizes the health of vital aquatic ecosystems. Satisfying the increased demands for food, water, and material goods of a growing global population while at the same time protecting the ecological services provided by natural water ecosystems requires new approaches to using and managing fresh water. In this article, I propose a global effort (1) to ensure that freshwater ecosystems receive the quantity, quality, and timing of flows needed for them to perform their ecological functions and (2) to work toward a goal of doubling water productivity. Meeting these challenges will require policies that promote rather than discourage water efficiency, as well as new partnerships that cross disciplinary and professional boundaries.

The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability

2016

Water scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20 th century. Water scarcity is analysed using the fundamental concepts of shortage (impacts due to low availability per capita) and stress (impacts due to high consumption relative to availability) which indicate difficulties in satisfying the needs of a population and overuse of resources respectively. While water consumption increased fourfold within the study period, the population under water scarcity increased from 0.24 billion (14% of global population) in the 1900s to 3.8 billion (58%) in the 2000s. Nearly all sub-national trajectories show an increasing trend in water scarcity. The concept of scarcity trajectory archetypes and shapes is introduced to characterize the historical development of water scarcity and suggest measures for alleviating water scarcity and increasing sustainability. Linking the scarcity trajectories to other datasets may help further deepen understanding of how trajectories relate to historical and future drivers, and hence help tackle these evolving challenges. The overexploitation of freshwater resources threatens food security and the overall wellbeing of humankind in many parts of the world 1. The maximum global potential for consumptive freshwater use (i.e. freshwater planetary boundary) 2,3 is approaching rapidly 4 , regardless of the estimate used. Due to increasing population pressure, changing water consumption behaviour, and climate change, the challenge of keeping water consumption at sustainable levels is projected to become even more difficult in the near future 5,6. Although many studies have increased the understanding of current blue water scarcity 7–14 , and how this may increase in the future 5,6,15 , the historical development of water scarcity is less well understood 10. Trajectories of these past changes at the global scale could be used to identify patterns of change, to provide a basis for addressing future challenges, and to highlight the similarities and differences in water scarcity problems that humanity shares around the world. This requires crossing scales, performing analyses globally, but at a sub-national resolution. Identifying recurring patterns of change can further provide evidence of key drivers of scarcity and thus help to recognise types of problems and solutions. Understanding what has occurred previously can thus help us to avoid repeating mistakes and to build on past successes. Like other forms of scarcity, physical blue water scarcity can be fundamentally divided into two aspects: shortage and stress. Water shortage refers to the impact of low water availability per person. In " crowded " conditions, when a large population has to depend on limited resources, the capacity of the resource might become insufficient to satisfy otherwise small marginal demands, such as dilution of pollutants in a water body, and competition may result in disputes 16. Given a resource and per capita requirements, water shortage can therefore be seen as