Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity (original) (raw)
DNA methylation participates in establishing and maintaining chromatin structures and regulates gene transcription during mammalian development and cellular differentiation. With few exceptions, research thus far has focused on gene promoters, and little is known about the extent, functional relevance, and regulation of cell type-specific DNA methylation at promoter-distal sites. Here, we present a comprehensive analysis of differential DNA methylation in human conventional CD4 + T cells (Tconv) and CD4 + CD25 + regulatory T cells (Treg), cell types whose differentiation and function are known to be controlled by epigenetic mechanisms. Using a novel approach that is based on the separation of a genome into methylated and unmethylated fractions, we examined the extent of lineage-specific DNA methylation across whole gene loci. More than 100 differentially methylated regions (DMRs) were identified that are present mainly in cell type-specific genes (e.g., FOXP3, IL2RA, CTLA4, CD40LG, and IFNG) and show differential patterns of histone H3 lysine 4 methylation. Interestingly, the majority of DMRs were located at promoter-distal sites, and many of these areas harbor DNA methylation-dependent enhancer activity in reporter gene assays. Thus, our study provides a comprehensive, locuswide analysis of lineage-specific methylation patterns in Treg and Tconv cells, links cell type-specific DNA methylation with histone methylation and regulatory function, and identifies a number of cell type-specific, CpG methylationsensitive enhancers in immunologically relevant genes.