The SPmap: a probabilistic framework for simultaneous localization and map building (original) (raw)

Abstract

This article describes a rigorous and complete framework for the simultaneous localization and map building problem for mobile robots: the symmetries and perturbations map (SPmap), which is based on a general probabilistic representation of uncertain geometric information. We present a complete experiment with a LabMate TM mobile robot navigating in a human-made indoor environment and equipped with a rotating two-dimensional (2-D) laser rangefinder. Experiments validate the appropriateness of our approach and provide a real measurement of the precision of the algorithms.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (15)

  1. R. Smith, M. Self, and P. Cheeseman, "Estimating uncertain spatial relationships in robotics," in Uncertainty in Artificial Intelligence 2, J. F. Lemmer and L. N. Kanal, Eds. New York: Elsevier, 1988, pp. 435-461.
  2. "A stochastic map for uncertain spatial relationships," in Robotics Research, The Fourth Int. Symposium, O. Faugeras and G. Giralt, Eds. Cambridge, MA: MIT Press, 1988, pp. 467-474.
  3. P. Moutarlier and R. Chatila, "Stochastic multisensory data fusion for mobile robot location and environment modeling," in 5th Int. Symp. Robot. Res., Tokyo, Japan, 1989, pp. 207-216.
  4. J. J. Leonard and H. F. Durrant-Whyte, "Simultaneous map building and localization for an autonomous mobile robot," in Proc. 1991 IEEE/RSJ Int. Conf. Intell. Robot. Syst., Osaka, Japan, 1991, pp. 1442-1447.
  5. Directed Sonar Sensing for Mobile Robot Navigation. London, U.K.: Kluwer, 1992.
  6. J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox, "Dynamic map building for an autonomous mobile robot," Int. Robot. Res., vol. 11, no. 4, pp. 286-298, 1992.
  7. P. Hébert, S. Betgé-Brezetz, and R. Chatila, "Probabilistic map learning: Necessity and difficulties," in Proc. Int. Workshop Reasoning Uncer- tainty Robot., Amsterdam, The Netherlands, 1995.
  8. J. K. Uhlmann, S. J. Julier, and M. Csorba, "Nondivergent simulta- neous map building and localization using covariance intersection," in Proc. AeroSense: 11th Int. Symp. Aerospace/Defense Sensing, Simulation Contr., Orlando, FL, 1997.
  9. J. A. Castellanos, "Mobile robot localization and map building: A multisensor fusion approach," Dept. Inform. Eng. Syst., Univ. Zaragoza, Maria de Luna, Spain, May 1998.
  10. J. A. Castellanos, J. D. Tardós, and G. Schmidt, "Building a global map of the environment of a mobile robot: The importance of correlations," in Proc. 1997 IEEE Int. Conf. Robot. Automat., Albuquerque, NM, Apr. 1997, pp. 1053-1059.
  11. J. D. Tardós, "Representing partial and uncertain sensorial information using the theory of symmetries," in Proc. 1992 IEEE Int. Conf. Robot. Automat., Nice, France, 1992, pp. 1799-1804.
  12. J. Neira, J. D. Tardós, J. Horn, and G. Schmidt, "Fusing range and intensity images for mobile robot localization," IEEE Trans. Robot. Automat., vol. 15, pp. 76-84, Feb. 1999.
  13. T. Bar-Shalom and T. E. Fortmann, Tracking and Data Association. New York: Academic, 1988.
  14. J. A. Castellanos and J. D. Tardós, "Laser-based segmentation and localization for a mobile robot," in Proceedings of the Sixth International Symposium (ISRAM), F. Pin, M. Jamshidi, and P. Dauchez, Eds. New York: ASME, 1996, pp. 101-108.
  15. J. A. Castellanos, J. M. Martínez, J. Neira, and J. D. Tardós, "Simulta- neous map building and localization for mobile robots: A multisensor fusion approach," in Proc. 1998 IEEE Int. Conf. Robot. Automat., Leuven, Belgium, May 1998, pp. 1244-1249.