Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet (original) (raw)
Related papers
Nutrients
Nonalcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of pathological hepatic conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which may predispose to liver cirrhosis and hepatocellular carcinoma (HCC). Due to the epidemic obesity, NAFLD is representing a global health issue and the leading cause of liver damage worldwide. The pathogenesis of NAFLD is closely related to insulin resistance (IR), adiposity and physical inactivity as well as genetic and epigenetic factors corroborate to the development and progression of hepatic steatosis and liver injury. Emerging evidence has outlined the implication of gut microbiota and gut-derived endotoxins as actively contributors to NAFLD pathophysiology probably due to the tight anatomo-functional crosstalk between the gut and the liver. Obesity, nutrition and environmental factors might alter intestinal permeability producing a favorable micro-environment for bacterial overgrowth, mucosal inflam...
Contemporary clinical trials, 2018
Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of fat-related conditions ranging from simple fatty liver, to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. There is growing evidence that NAFLD is a multisystem disease, affecting several extra-hepatic organs and regulatory pathways. Furthermore, since the gut and liver are linked anatomically via the portal vein, disturbances of the gut microbiota (dysbiosis) can affect the liver. In patients with NAFLD, we are testing the effects of a synbiotic which is the combination of a prebiotic (fructooligosaccharides; 4 g/day) and a probiotic (Bifidobacterium animalis subsp. lactis BB-12 at a minimum of 10 billion CFU/day) on a) liver fat percentage, b) NAFLD fibrosis algorithm scores, c) gut microbiota composition. Additionally, there will be several hypothesis-generating secondary outcomes to understand the metaorganismal pathways that influence the development and progression of NAFLD, type 2 diabetes, and c...
Journal of gastrointestinal and liver diseases : JGLD, 2018
Probiotics have a beneficial effect on nonalcoholic fatty liver disease (NAFLD) in animal models. Randomized placebo-controlled trials (RCTs) in NAFLD are still lacking in humans despite a large number of data from animal research. We performed a double-blind single center RCT of live multi-strain probiotic vs. placebo in type 2 diabetes patients with NAFLD. A total of 58 patients met the criteria for inclusion. They were randomly assigned to receive the multi-probiotic "Symbiter" (concentrated biomass of 14 probiotic bacteria genera Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium) or placebo for 8-weeks administered as a sachet formulation in double-blind treatment. The primary main outcomes were the changes in fatty liver index (FLI) and liver stiffness (LS) measured by Shear Wave Elastography (SWE). Secondary outcomes were the changes in aminotransferase activity, serum lipids and cytokines (TNF-α, IL-1β, IL-6, IL-8, and IFN-γ) levels. Analysis of covaria...
Romanian Journal of Internal Medicine, 2024
Introduction: Metabolic Dysfunction-associated Liver Disease (MASLD) represents a spectrum of conditions from simple fat accumulation to non-alcoholic steatohepatitis. The possible role of the intestinal microbiome on MASLD development has been in focus. Our study aimed to examine the effects of synbiotics on the liver steatosis, inflammation, and stool microbiome. Methods: A double-blind, placebo-controlled study was conducted involving 84 MASLD patients, defined by an elastometric attenuation coefficient (ATT) greater than 0.63 dB/cm/MHz with an alanine aminotransferase level above 40 U/L for men and 35 U/L for women. The patients were divided into an intervention group treated with a synbiotic with 64x10 9 CFU of Lactobacillus and Bifidobacterium and 6.4g of inulin and a control group treated with a placebo. Results: Using synbiotics for 12 weeks significantly decreased liver steatosis (ΔATT-0.006±0.023 vs-0.016±0.021 dB/cm/MHz, p=0.046). The group of patients treated with synbiotics showed a significant decrease in the level of high-sensitive C-reactive protein (Δhs-CRP 0 vs-0.7 mg/L, p≤0.001). Synbiotics enriched the microbiome of patients in the intervention group with the genera Lactobacillus, Bifidobacterium, Faecalibacterium, and Streptococcus, by 81%, 55%, 51%, and 40%, respectively, with a reduction of Ruminococcus and Enterobacterium by 35% and 40%. Synbiotic treatment significantly shortened the gut transition time (ΔGTT-5h vs.-10h, p=0.031). Conclusion: Synbiotics could be an effective and safe option that could have place in MASLD treatment.
International Journal of Molecular Sciences, 2016
The use of probiotics and synbiotics in the prevention and treatment of different disorders has dramatically increased over the last decade. Both probiotics and synbiotics are well known ingredients of functional foods and nutraceuticals and may provide beneficial health effects because they can influence the intestinal microbial ecology and immunity. The present study reviews the effects of probiotics and synbiotics on obesity, insulin resistance syndrome (IRS), type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) in human randomized clinical trials. Select probiotics and synbiotics provided beneficial effects in patients with obesity, mainly affecting the body mass index and fat mass. Some probiotics had beneficial effects on IRS, decreasing the cell adhesion molecule-1 levels, and the synbiotics decreased the insulin resistance and plasma lipid levels. Moreover, select probiotics improved the carbohydrate metabolism, fasting blood glucose, insulin sensitivity and antioxidant status and also reduced metabolic stress in subjects with T2D. Some probiotics and synbiotics improved the liver and metabolic parameters in patients with NAFLD. The oral intake of probiotics and synbiotics as co-adjuvants for the prevention and treatment of obesity, IRS, T2D and NAFLD is partially supported by the data shown in the present review. However, further studies are required to understand the precise mechanism of how probiotics and synbiotics affect these metabolic disorders.
Nutrients
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, reaching epidemic proportions worldwide. Targeting the gut–adipose tissue–liver axis by modulating the gut microbiota can be a promising therapeutic approach in NAFLD. Lactiplantibacillus plantarum, a potent lactic-acid-producing bacterium, has been shown to attenuate NAFLD. However, to our knowledge, the possible effect of the Lactiplantibacillus plantarum strain DSM20174 (L.p. DSM20174) on the gut–adipose tissue axis, diminishing inflammatory mediators as fuel for NAFLD progression, is still unknown. Using a NAFLD mouse model fed a high-fat, high-fructose (HFHF) diet for 10 weeks, we show that L.p DSM20174 supplementation of HFHF mice prevented weight gain, improved glucose and lipid homeostasis, and reduced white adipose inflammation and NAFLD progression. Furthermore, 16S rRNA gene sequencing of the faecal microbiota suggested that treatment of HFHF-fed mice with L.p DSM20174 changed the...
Applied microbiology and biotechnology, 2014
The increasing prevalence of obesity worldwide is associated with a parallel increase in non-alcoholic fatty liver disease (NAFLD). To investigate the effect of Lactobacillus johnsonii BS15 on NAFLD, 120 male ICR mice were randomly divided into four groups and administrated with BS15 (2 × 10(7) cfu/0.2 mL or 2 × 10(8) cfu/0.2 mL) or phosphate buffered saline (PBS) throughout a 17-week experimental period. The mice were fed with normal chow diet (NCD) 5 weeks before the experimental period. Afterward, with the exception of the PBS group, NCD was changed into high-fat diet (HFD) for the remaining experimental period. Results showed that BS15-treated HFD mice were protected from hepatic steatosis and hepatocyte apoptosis. BS15 exhibited a positive effect on liver lipid peroxidation through an anti-oxidative stress activity by enhancing the liver antioxidant defense system. In addition, BS15 inhibited the insulin resistance; decreased the mRNA levels of acetyl-CoA carboxylase 1, fatty a...
Nutrients
Treatment for non-alcoholic fatty liver disease (NAFLD) currently consists of lifestyle modifications such as a low-fat diet, weight loss, and exercise. The gut microbiota forms part of the gut–liver axis and serves as a potential target for NAFLD treatment. We investigated the effect of probiotics on hepatic steatosis, fibrosis, and biochemical blood tests in patients with NAFLD. At the small intestinal mucosal level, we examined the effect of probiotics on the expression of CD4+ and CD8+ T lymphocytes, as well as the tight junction protein zona occluden-1 (ZO-1). This was a randomized, double-blind, placebo-controlled trial involving ultrasound-diagnosed NAFLD patients (n = 39) who were supplemented with either a probiotics sachet (MCP® BCMC® strains) or a placebo for a total of 6 months. Multi-strain probiotics (MCP® BCMC® strains) containing six different Lactobacillus and Bifidobacterium species at a concentration of 30 billion CFU were used. There were no significant changes a...
Probiotics and Prebiotics as a Strategy for Non-Alcoholic Fatty Liver Disease, a Narrative Review
Foods, 2021
Non-alcoholic fatty liver disease (NAFLD) is a chronic non-communicable disease, with a prevalence of 25% worldwide. This pathology is a multifactorial illness, and is associated with different risks factors, including hypertension, hyperglycemia, dyslipidemia, and obesity. Beside these predisposing features, NAFLD has been related to changes in the microbiota, which favor the disease progression. In this context, the modulation of the gut microbiota has emerged as a new therapeutic target for the prophylaxis and treatment of NAFLD. This review describes the changes in the gut microbiota associated with NAFLD and the effect of probiotics, prebiotics, and synbiotics on the gut microbiota, liver damage, anthropometric parameters, blood lipids, inflammation markers and insulin resistance in these patients.