Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Application of hydrophilic silica nanoparticles in chemical enhanced heavy oil recovery processes (original) (raw)

An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs

Egyptian Journal of Petroleum, 2013

The role of nanoparticles in enhancing oil recovery from oil reservoirs is an increasingly important topic of research. Nanoparticles have the properties that are potentially useful for enhanced oil recovery processes, as they are solid and two orders of magnitude smaller than colloidal particles. This paper presents a comparison between the efficiency of modified silica nanoparticles in enhancing oil recovery from two different Iranian light and intermediate oil reservoirs. The mechanisms used to recover additional oil would be oil-water interfacial tension reduction and wettability alteration. Oil phase contact angles and oil-water interfacial tensions were measured in the absence and the presence of nano fluids' different concentrations (1-4 g/L). Results showed that the interfacial tension reduces dramatically in the presence of nanoparticles for both light and intermediate oil. In addition oil phase contact angle results showed a transformation of rock wettability from water-wet toward oil-wet condition. However, these nanoparticles are more capable in the reduction of the interfacial tension and the alteration of wettability in the case of light oil reservoir. A comparison between recovery results indicated that these nanoparticles are more efficient in light oil reservoirs and produce more incremental amount of oil after primary and secondary processes.

A study of water chemistry extends the benefits of using silica-based nanoparticles on enhanced oil recovery

Chemistry of the injected water has been investigated as an important parameter to improve/enhance oil recovery (IOR/EOR). Numerous extensive experiments have observed that water chemistry, such as ionic composition and salinity, can be modified for IOR/EOR purposes. However, the possible oil displacement mechanism remains debatable. Nanoparticle recently becomes more popular that have shown a great potential for IOR/EOR purposes in lab-scale, where in most experiments, waterbased fluid were used as dispersed fluid. As yet, there has been no discussion in the literature on the study of water chemistry on enhanced oil recovery using silica-based nanoparticles. A broad range of laboratory studies involving rock, nanoparticles and fluid characterization; fluidfluid and fluid-rock interactions; surface conductivity measurement; coreflood experiment; injection strategy formulation; filtration mechanism and contact angle measurement are conducted to investigate the impact of water chemistry, such as water salinity and ionic composition including hardness cations, on the performance of silicabased nanoparticles in IOR/EOR process and reveal possible displacement mechanism. The experimental results demonstrated that water salinity and ionic composition significantly impacted oil recovery using hydrophilic silica-based nanoparticles and that the oil recovery increased with the salinity. The primary findings from this study are that the water salinity, the ionic composition and the injection strategy are important parameters to be considered in Nano-EOR.

Effect of Some Parameters Influencing Enhanced Oil Recovery Process using Silica Nanoparticles: An Experimental Investigation

SPE Reservoir Characterization and Simulation Conference and Exhibition, 2013

Align with current dynamic technology development, waterflooding techniques have been improved and optimized to have better oil recovery performance. In addition the latest worldwide industries innovation trends are miniaturization and nanotechnology materials such as nanoparticles. Hence one of the ideas is using nanoparticles to assist waterflood performance. However it is crucial to have a clear depiction of some parameters that may influences displacement process. The focus of this study is to investigate the effects of some parameters influencing oil recovery process due to nanoparticles such as particle size, rock permeability, initial rock wettability, injection rate and temperature. This study is part of our ongoing research in developing nanofluids for future or alternative enhanced oil recovery (Nano-EOR) method. Three different sizes of hydrophilic silica nanoparticles with single particle diameter range from 7 to 40 nm were employed and have been characterized under scan...

Experimental investigation of surface-functionalised silica nanoparticles for enhanced oil recovery

2020

Enhanced oil recovery (EOR) using nanoparticles (NPs) has been proposed as a solution in the petroleum industry to overcome declining production rates. Research has shown that commercially available hydrophilic silica NPs, manufactured by Evonik Industries, as additives to water flood can increase oil production from oil reservoirs. However, recent advances show that surface modification can further improve the microscopic sweep efficiency of NPs due to improved solubility and stability, greater stabilisation of emulsions, and low retention on porous medium compared with bare nanoparticles. The hypothesis above was the initiation of the present project. Evonik Industries developed twenty-three different types of silica nanoparticles with surface functionalities for oil recovery applications. The NPs were supplied to us as special research and development products under the name AERODISP®, or more precisely AEROSIL® particles in liquid solution. Twenty-three unique glass micromodel i...

Enhancing Oil Recovery with Hydrophilic Polymer-Coated Silica Nanoparticles

Energies, 2020

Nanoparticles (NPs) have been proposed for enhanced oil recovery (EOR). The research has demonstrated marvelous effort to realize the mechanisms of nanoparticles EOR. Nevertheless, gaps still exist in terms of understanding the nanoparticles-driven interactions occurring at fluids and fluid-rock interfaces. Surface-active polymers or other surface additive materials (e.g., surfactants) have shown to be effective in aiding the dispersion stability of NPs, stabilizing emulsions, and reducing the trapping or retention of NPs in porous media. These prerequisites , together with the interfacial chemistry between the NPs and the reservoir and its constituents, can result in an improved sweep efficiency. This paper investigates four types of polymer-coated silica NPs for the recovery of oil from water-wet Berea sandstones. A series of flooding experiments was carried out with NPs dispersed at 0.1 wt.% in seawater in secondary and tertiary oil recovery modes at ambient conditions. The dynamic interactions of fluids, fluid-rock, and the transport behavior of injected fluid in the presence of NPs were, respectively, studied by interfacial tension (IFT), spontaneous imbibition tests, and a differential pressure analysis. Core flooding results showed an increase in oil recovery up to 14.8% with secondary nanofluid injection compared to 39.7% of the original oil in place (OOIP) from the conventional waterflood. In tertiary mode, nanofluids increased oil recovery up to 9.2% of the OOIP. It was found that no single mechanism could account for the EOR effect with the application of nanoparticles. Instead, the mobilization of oil seemed to occur through a combination of reduced oil/water IFT, change in the rock surface roughness and wettability, and microscopic flow diversion due to clogging of the pores.

Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions for Enhanced Oil-Recovery Applications

Nanomaterials, 2020

To be effective enhanced oil-recovery (EOR) agents, nanoparticles must be stable and be transported through a reservoir. However, the stability of a nanoparticle suspension at reservoir salinity and temperature is still a challenge and how it is affected by reservoir rocks and crude oils is not well understood. In this work, for the first time, the effect of several nanoparticle treatment approaches on the stability of silica nanoparticles at reservoir conditions (in the presence of reservoir rock and crude oil) was investigated for EOR applications. The stability of nanoparticle suspensions was screened in test tubes at 70 • C and 3.8 wt. % NaCl in the presence of reservoir rock and crude oil. Fumed silica nanoparticles in suspension with hydrochloric acid (HCl), polymer-modified fumed nanoparticles and amide-functionalized silica colloidal nanoparticles were studied. The size and pH of nanoparticle suspension in contact with rock samples were measured to determine the mechanism for stabilization or destabilization of nanoparticles. A turbidity scanner was used to quantify the stability of the nanoparticle suspension. Results showed that both HCl and polymer surface modification can improve nanoparticle stability under synthetic seawater salinity and 70 • C. Suspensions of polymer-modified nanoparticles were stable for months. It was found that pH is a key parameter influencing nanoparticle stability. Rock samples containing carbonate minerals destabilized unmodified nanoparticles. Crude oil had limited effect on nanoparticle stability. Some components of crude oil migrated into the aqueous phase consisting of amide-functionalized silica colloidal nanoparticles suspension. Nanoparticles modification or/and stabilizer are necessary for nanoparticle EOR application.

Experimental Evaluation of Oil Recovery Mechanisms Using a Variety of Surface-Modified Silica Nanoparticles in the Injection Water

Day 1 Tue, May 14, 2019, 2019

Lack of relevant screening methods of oil recovery techniques for water flood with added nanoparticles in a given reservoir are hindering its implementation for enhanced oil recovery (EOR) purposes. Moreover, the understanding of the underlying mechanisms of oil increased by nanoparticles must be improved. In this work, we screened twenty-three different types of silica nanoparticles as additives to injection water for oil recovery applications. The nanoparticles were surface functionalised to remain stable in the injection water and be active at the surface. The hypothesis is that the particles will improve the microscopic oil recovery efficiency of water flood in an oil reservoir. The concentrated solution of nanoparticles were prepared to 0.1 wt % concentration in synthetic North Sea water. Crude oil was obtained from a field in the North Sea. The following investigations were carried out to quickly verify the performance of nanoparticle oil recovery: 1) secondary injection throu...

Experimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery

Nanomaterials, 2019

Recently, polymer-coated nanoparticles were proposed for enhanced oil recovery (EOR) due to their improved properties such as solubility, stability, stabilization of emulsions and low particle retention on the rock surface. This work investigated the potential of various polymer-coated silica nanoparticles (PSiNPs) as additives to the injection seawater for oil recovery. Secondary and tertiary core flooding experiments were carried out with neutral-wet Berea sandstone at ambient conditions. Oil recovery parameters of nanoparticles such as interfacial tension (IFT) reduction, wettability alteration and log-jamming effect were investigated. Crude oil from the North Sea field was used. The concentrated solutions of PSiNPs were diluted to 0.1 wt % in synthetic seawater. Experimental results show that PSiNPs can improve water flood oil recovery efficiency. Secondary recoveries of nanofluid ranged from 60% to 72% of original oil in place (OOIP) compared to 56% OOIP achieved by reference water flood. In tertiary recovery mode, the incremental oil recovery varied from 2.6% to 5.2% OOIP. The IFT between oil and water was reduced in the presence of PSiNPs from 10.6 to 2.5-6.8 mN/m, which had minor effect on EOR. Permeability measurements indicated negligible particle retention within the core, consistent with the low differential pressure observed throughout nanofluid flooding. Amott-Harvey tests indicated wettability alteration from neutral-to water-wet condition. The overall findings suggest that PSiNPs have more potential as secondary EOR agents than tertiary agents, and the main recovery mechanism was found to be wettability alteration.