Detecting Travel Time Variations in Urban Road Networks by Taxi Trajectory Intersections (original) (raw)
Related papers
Detecting vehicle traffic patterns in urban environments using taxi trajectory intersection points
Detecting and describing movement of vehicles in established transportation infrastructures is an important task. It helps to predict periodical traffic patterns for optimizing traffic regulations and extending the functions of established transportation infrastructures. The detection of traffic patterns consists not only of analyses of arrangement patterns of multiple vehicle trajectories, but also of the inspection of the embedded geographical context. In this paper, we introduce a method for intersecting vehicle trajectories and extracting their intersection points for selected rush hours in urban environments. Those vehicle trajectory intersection points (TIP) are frequently visited locations within urban road networks and are subsequently formed into density-connected clusters, which are then represented as polygons. For representing temporal variations of the created polygons, we enrich these with vehicle trajectories of other times of the day and additional road network information. In a case study, we test our approach on massive taxi Floating Car Data (FCD) from Shanghai and road network data from the OpenStreetMap (OSM) project. The first test results show strong correlations with periodical traffic events in Shanghai. Based on these results, we reason out the usefulness of polygons representing frequently visited locations for analyses in urban planning and traffic engineering.
Exploratory Study of Urban Flow using Taxi Traces
2011
The analysis of vehicle's GPS traces such as taxis can help better understand urban mobility and flow. In this paper we present a spatiotemporal analysis of taxis GPS traces collected in Lisbon, Portugal during the course of five month. We also show that trip distance can be represented with a Gamma distribution, and discuss the taxi driving strategies and respective income.
Traffic congestion in urban environments has severe influences on the daily life of people. Due to typical recurrent mobility patterns of commuters and transport fleets, we can detect traffic congestion events on selected hours of the day, so called rush hours. Besides the mentioned recurrent traffic congestion, there are non-recurrent events that may be caused by accidents or newly established building sites. We want to inspect this appearance using a massive Floating Taxi Data (FTD) set of Shanghai from 2007. We introduce a simple method for detecting and extracting congestion events on selected rush hours and for distinguishing between their recurrence and non-recurrence. By preselecting of similar velocity and driving direction values of the nearby situated FTD points, we provide the first part for the Shared Nearest Neighbour (SNN) clustering method, which follows with a density-based clustering. After the definition of our traffic congestion clusters, we try to connect ongoing events by querying individual taxi identifications. The detected events are then represented by polylines that connect density core points of the clusters. By comparing the shapes of congestion propagation polylines of different days, we try to classify recurrent congestion events that follow similar patterns. In the end, we reason on the reasonability of our method and mention further steps of its extension.
Urban Mobility Study using Taxi Traces
In this work, we analyze taxi-GPS traces collected in Lisbon, Portugal. We perform an exploratory analysis to visualize the spatiotemporal variation of taxi services; explore the relationships between pickup and drop-off locations; and analyze the behavior in downtime (between the previous drop-off and the following pickup). We also carry out the analysis of predictability of taxi trips for the next pickup area type given history of taxi flow in time and space.
T-drive: Driving directions based on taxi trajectories
2010
GPS-equipped taxis can be regarded as mobile sensors probing traffic flows on road surfaces, and taxi drivers are usually experienced in finding the fastest (quickest) route to a destination based on their knowledge. In this paper, we mine smart driving directions from the historical GPS trajectories of a large number of taxis, and provide a user with the practically fastest route to a given destination at a given departure time. In our approach, we propose a time-dependent landmark graph, where a node (landmark) is a road segment frequently traversed by taxis, to model the intelligence of taxi drivers and the properties of dynamic road networks. Then, a Variance-Entropy-Based Clustering approach is devised to estimate the distribution of travel time between two landmarks in different time slots. Based on this graph, we design a two-stage routing algorithm to compute the practically fastest route. We build our system based on a realworld trajectory dataset generated by over 33,000 taxis in a period of 3 months, and evaluate the system by conducting both synthetic experiments and in-the-field evaluations. As a result, 60-70% of the routes suggested by our method are faster than the competing methods, and 20% of the routes share the same results. On average, 50% of our routes are at least 20% faster than the competing approaches.
A Grid-Based Approach for Measuring Similarities of Taxi Trajectories
Sensors
Similarity measurement is one of the key tasks in spatial data analysis. It has a great impact on applications i.e., position prediction, mining and analysis of social behavior pattern. Existing methods mainly focus on the exact matching of polylines which result in the trajectories. However, for the applications like travel/drive behavior analysis, even for objects passing by the same route the trajectories are not the same due to the accuracy of positioning and the fact that objects may move on different lanes of the road. Further, in most cases of spatial data mining, locations and sometimes sequences of locations on trajectories are most important, while how objects move from location to location (the exact geometries of trajectories) is of less interest. For the abovementioned situations, the existing approaches cannot work anymore. In this paper, we propose a grid aware approach to convert trajectories into sequences of codes, so that shape details of trajectories are neglecte...
Urban link travel time estimation using large-scale taxi data with partial information
Transportation Research Part C: Emerging Technologies, 2013
Taxicabs equipped with Global Positioning System (GPS) devices can serve as useful probes for monitoring the traffic state in an urban area. This paper presents a new descriptive model for estimating hourly average of urban link travel times using taxicab origin-destination (OD) trip data. The focus of this study is to develop a methodology to estimate link travel times from OD trip data and demonstrate the feasibility of estimating network condition using large-scale geo-location data with partial information. The data, collected from the taxicabs in New York City, provides the locations of origins and destinations, travel times, fares and other information of taxi trips. The new model infers the possible paths for each trip and then estimates the link travel times by minimizing the error between the expected path travel times and the observed path travel times. The model is evaluated using a test network from Midtown Manhattan. Results indicate that the proposed method can efficiently estimate hourly average link travel times. This research provides new possibilities for fully utilizing the partial information obtained from urban taxicab data for estimating network condition, which is not only very useful but also is inexpensive and has much better coverage than traditional sensor data.
Visual Analysis of Floating Taxi Data Based on Interconnected and Timestamped Area Selections
Lecture Notes in Geoinformation and Cartography, 2016
Floating Car Data (FCD) is GNSS-tracked vehicle movement, includes often large data size and is difficult to handle, especially in terms of visualization. Recently, FCD is often the base for interactive traffic maps for navigation and traffic forecasting. Handling FCD includes problems of large computational efforts, especially in case of connecting tracked vehicle positions to digitized road networks and subsequent traffic state derivations. Established interactive traffic maps show one possible visual representation for FCD. We propose a user-adapted map for the visual analysis of massive vehicle movement data. In our visual analysis approach we distinguish between a global and a local view on the data. Global views show the distribution of user-defined selection areas, in the way of focus maps. Local views show user-defined polygons with 2-D and 3-D traffic parameter visualizations and additional diagrams. Each area selection is timestamped with the time of its creation by the user. After defining a number of area selections it is possible to calculate weekday-dependent travel times based on historical taxi FCD. There are 3 different types of defined connections in global views. This has the aim to provide personalization for specific commuters by delivering only traffic and travel time information for and between user-selected areas. In a case study we inspect traffic parameters based on taxi FCD from Shanghai observed within 15 days in 2007. We introduce test selection areas, calculate their average traffic parameters and compare them with recent (2015) and typical traffic states coming from the Google traffic layer.
Traffic congestion analysis at the turn level using Taxis' GPS trajectory data
Computers, Environment and Urban Systems, 2019
Sensing turn-level or lane-level traffic conditions not only enables navigation systems to provide users with more detailed and finer-grained information, it can also improve the accuracy in the search for the fastest routes and in short-term predictions of traffic conditions. The widespread collection and application of taxis' GPS data enable us to sense urban traffic flow on a large scale. Since current GPS positional accuracy cannot reach the lane level, existing approaches using GPS trajectory data only analyze traffic conditions at the road level. Whereas some studies attempted to detect lane-level traffic conditions using lane-level data, the high cost of data collection considerably limits their practical application. To address this limitation, this article proposes an approach for detecting traffic congestion from taxis' GPS trajectories at the turn level. Based on analyzing features of GPS trajectories and identifying valid trajectory segments, the proposed approach detects congested trajectory segments of three different intensities. It then identifies congestion events in each turning direction through a clustering approach. Finally, congestion intensity, time of the day when congestion occurred and queue length in each turning direction at a road intersection in Wuhan, China are explored and analyzed. The results support the feasibility of this approach for detecting and analyzing traffic congestion at the turn level. Compared with other approaches that detect traffic congestion using GPS trajectory data, the proposed approach analyzes congestion at a finer-grained level (the turn level). Compared with other approaches that detect traffic congestion at the lane level, the proposed approach can sense traffic congestion over a larger area and at a lower cost.
Discovery of Important Crossroads in Road Network using Massive Taxi Trajectories
A major problem in road network analysis is discovery of important crossroads, which can provide useful information for transport planning. However, none of existing approaches addresses the problem of identifying network-wide important crossroads in real road network. In this paper, we propose a novel data-driven based approach named CRRank to rank important crossroads. Our key innovation is that we model the trip network reflecting real travel demands with a tripartite graph, instead of solely analysis on the topology of road network. To compute the importance scores of crossroads accurately, we propose a HITSlike ranking algorithm, in which a procedure of score propagation on our tripartite graph is performed. We conduct experiments on CRRank using a real-world dataset of taxi trajectories. Experiments verify the utility of CRRank.