Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state (original) (raw)
Abstract
AI
This research characterizes berkelium(III) dipicolinate and borate compounds, focusing on crystallization for structural and physical property analysis. Utilizing computational modeling, the role of covalent bonding and spin-orbit coupling in the electronic properties of berkelium was explored. Key findings reveal that Bk(III) exhibits structural similarities with Cf(III) and that spin-orbit coupling significantly influences the ground state properties of late actinide compounds.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (51)
- AND NOTES
- T. K. Sato et al., Measurement of the first ionization potential of lawrencium, element 103. Nature 520, 209-211 (2015). doi: 10.1038/nature14342; pmid: 25855457
- J. Even et al., Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491-1493 (2014). doi: 10.1126/science.1255720; pmid: 25237098
- A. Bilewicz, S. Siekierski, Chemical studies of rutherfordium (Element 104): Part I. Thin film ferrocyanide surfaces for the study of the hydrolysis of rutherfordium. Radiochim. Acta 75, 121-126 (1996). doi: 10.1524/ract.1996.75.3.121
- N. J. Stoyer et al., Chemical identification of a long-lived isotope of dubnium, a descendent of element 115. Nucl. Phys. A. 787, 388-395 (2007). doi: 10.1016/ j.nuclphysa.2006.12.060
- M. Janoschek et al., The valence-fluctuating ground state of plutonium. Sci. Adv. 1, e1500188 (2015). doi: 10.1126/ sciadv.1500188; pmid: 26601219
- S. K. Cary et al., Emergence of californium as the second transitional element in the actinide series. Nat. Commun. 6, 6827-6834 (2015). doi: 10.1038/ncomms7827; pmid: 25880116
- T. Albrecht-Schmitt, Californium gleaming. Nat. Chem. 6, 840 (2014). doi: 10.1038/nchem.2035; pmid: 25143222
- G. Liu, S. K. Cary, T. E. Albrecht-Schmitt, Metastable charge- transfer state of californium(iii) compounds. Phys. Chem. Chem. Phys. 17, 16151-16157 (2015). doi: 10.1039/ C5CP01855B; pmid: 26032575
- M. J. Polinski et al., Unusual structure, bonding and properties in a californium borate. Nat. Chem. 6, 387-392 (2014). doi: 10.1038/nchem.1896; pmid: 24755589
- S. Heathman, T. Le Bihan, S. Yagoubi, B. Johansson, R. Ahuja, Structural investigation of californium under pressure. Phys. Rev. B 87, 214111-214118 (2013). doi: 10.1103/PhysRevB.87.214111
- W. T. Carnall, J. V. Beitz, H. Crosswhite, Electronic energy level and intensity correlations in the spectra of the trivalent actinide aquo ions. III. Bk 3+ . J. Chem. Phys. 80, 2301-2308 (1984). doi: 10.1063/1.446980
- W. T. Carnall, A systematic analysis of the spectra of trivalent actinide chlorides in D 3h site symmetry. J. Chem. Phys. 96, 8713-8726 (1992). doi: 10.1063/1.462278
- G. M. Jursich et al., Laser-induced fluorescence of 249 Bk 4+ in CeF 4 . Inorg. Chim. Acta 139, 273-274 (1987). doi: 10.1016/ S0020-1693(00)84093-1
- J. H. Burns, J. R. Peterson, Crystal structures of americium trichloride hexahydrate and berkelium trichloride hexahydrate. Inorg. Chem. 10, 147-151 (1971). doi: 10.1021/ic50095a029
- P. G. Laubereau, J. H. Burns, Microchemical preparation of tricyclopentadienyl compounds of berkelium, californium, and some lanthanide elements. Inorg. Chem. 9, 1091-1095 (1970). doi: 10.1021/ic50087a018
- J. R. Peterson, J. P. Young, D. D. Ensor, R. G. Haire, Absorption spectrophotometric and x-ray diffraction studies of the trichlorides of berkelium-249 and californium-249. Inorg. Chem. 25, 3779-3782 (1986). doi: 10.1021/ic00241a015
- M. R. Antonio, C. W. Williams, L. Soderholm, Berkelium redox speciation. Radiochim. Acta 90, 851-856 (2002). doi: 10.1524/ ract.2002.90.12_2002.851
- J. H. Burns, J. R. Peterson, R. D. Baybarz, Hexagonal and orthorhombic crystal structures of californium trichloride. J. Inorg. Nucl. Chem. 35, 1171-1177 (1973). doi: 10.1016/0022- 1902(73)80189-7
- E. Galbis et al., Solving the hydration structure of the heaviest actinide aqua ion known: The californium(III) case. Angew. Chem. Int. Ed. 49, 3811-3815 (2010). doi: 10.1002/ anie.200906129; pmid: 20401881
- S. K. Cary et al., Spontaneous partitioning of californium from curium: Curious cases from the crystallization of curium coordination complexes. Inorg. Chem. 54, 11399-11404 (2015). doi: 10.1021/acs.inorgchem.5b02052; pmid: 26562586
- M. L. Neidig, D. L. Clark, R. L. Martin, Covalency in f-element complexes. Coord. Chem. Rev. 257, 394-406 (2013). doi: 10.1016/j.ccr.2012.04.029
- B. Weaver, F. A. Kappelmann, TALSPEAK, A New Method of Separating Americium and Curium from the Lanthanides by Extraction from an Aqueous Solution of an Aminopolyacetic Acid Complex with a Monoacetic Organophosphate or Phosphonate; ORNL-3559, Oak Ridge National Laboratory: Oak Ridge, TN, 1964.
- J. C. Braley, T. S. Grimes, K. L. Nash, Alternatives to HDEHP and DTPA for Simplified TALSPEAK Separations. Ind. Eng. Chem. Res. 51, 629-638 (2012). doi: 10.1021/ie200285r
- C. R. Heathman, K. L. Nash, Characterization of europium and americium dipicolinate complexes. Sep. Sci. Technol. 47, 2029-2037 (2012).
- M. J. Polinski et al., Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682-10692 (2012). doi: 10.1021/ja303804r; pmid: 22642795
- M. J. Polinski, S. Wang, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Bonding changes in plutonium(III) and americium(III) borates. Angew. Chem. Int. Ed. 50, 8891-8894 (2011). doi: 10.1002/anie.201103502; pmid: 21853508
- M. J. Polinski et al., Curium(III) borate shows coordination environments of both plutonium(III) and americium(III) borates. Angew. Chem. Int. Ed. 51, 1869-1872 (2012). doi: 10.1002/anie.201107956; pmid: 22246722
- I. Grenthe, E. Jacobsen, E.-L. Syväoja, A. Alivaara, M. Traetteberg, Thermodynamic properties of rare earth complexes. II. Free energy, enthalpy, and entropy changes for the formation of rare earth diglycolate and dipicolinate complexes at 25.00 °C. Acta Chem. Scand. 17, 2487-2498 (1963). doi: 10.3891/acta.chem.scand.17-2487
- M. Miguirditchian et al., Thermodynamic study of the complexation of trivalent actinide and lanthanide cations by ADPTZ, a tridentate N-donor ligand. Inorg. Chem. 44, 1404-1412 (2005). doi: 10.1021/ic0488785; pmid: 15732980
- G. R. Choppin, Covalency in f-element bonds. J. Alloys Compd. 344, 55-59 (2002). doi: 10.1016/S0925-8388(02)00305-5
- J. A. Drader, M. Luckey, J. C. Braley, Thermodynamic considerations of covalency in trivalent actinide-(poly) aminopolycarboxylate interactions. Solvent Extr. Ion Exch 34, 114-125 (2016). doi: 10.1080/07366299.2016.1140436
- W. Wang, G. K. Liu, M. G. Brik, L. Seijo, D. Shi, 5f-6d Orbital hybridization of trivalent uranium in crystals of hexagonal symmetry: Effects on electronic energy levels and transition intensities. Phys. Rev. B 80, 155120-155132 (2009). doi: 10.1103/PhysRevB.80.155120
- J. van Leusen, M. Speldrich, H. Schilder, P. Kögerler, Comprehensive insight into molecular magnetism via CONDON: Full vs. effective models. Coord. Chem. Rev. 289-290, 137-148 (2015). doi: 10.1016/j.ccr.2014.10.011
- A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993). doi: 10.1063/1.464913
- J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter 45, 13244-13249 (1992). doi: 10.1103/ PhysRevB.45.13244; pmid: 10001404
- F. Gendron, B. Pritchard, H. Bolvin, J. Autschbach, Single-ion 4f element magnetism: An ab-initio look at Ln(COT) 2 (-). Dalton
- Trans. 44, 19886-19900 (2015). doi: 10.1039/C5DT02858B; pmid: 26510902
- L. F. Chibotaru, L. Ungur, Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys. 137, 064112 (2012). doi: 10.1063/1.4739763; pmid: 22897260
- I. Ahmad et al., a-Decay of 249 97 Bk and levels in 245 95 Am. Phys. Rev. C Nucl. Phys. 87, 054328 (2013). doi: 10.1103/ PhysRevC.87.054328
- A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7-13 (2003). doi: 10.1107/ S0021889802022112
- W. Küchle, M. Dolg, H. Stoll, H. Preuß, Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535-7543 (1994). doi: 10.1063/1.466847
- X. Y. Cao, M. Dolg, H. Stoll, Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487-497 (2003). doi: 10.1063/1.1521431
- X. Cao, M. Dolg, Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 673, 203-209 (2004). doi: 10.1016/j.theochem.2003.12.015
- A. Moritz, X. Y. Cao, M. Dolg, Quasirelativistic energy- consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 118, 845-854 (2007). doi: 10.1007/s00214-007-0330-6
- W. J. Hehre, R. Ditchfield, J. A. Pople, Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257-2261 (1972). doi: 10.1063/1.1677527
- P. C. Hariharan, J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213-222 (1973). doi: 10.1007/BF00533485
- J. S. Binkley, J. A. Pople, W. J. Hehre, Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939-947 (1980). doi: 10.1021/ja00523a008
- M. J. Frisch et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, (2009).
- C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37, 785-789 (1988). doi: 10.1103/PhysRevB.37.785; pmid: 9944570
- G. A. Zhurko, D. A. Zhurko, ChemCraft Version 1.7. www.chemcraftprog.com (accessed May 2009).