Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state (original) (raw)

Abstract

sparkles

AI

This research characterizes berkelium(III) dipicolinate and borate compounds, focusing on crystallization for structural and physical property analysis. Utilizing computational modeling, the role of covalent bonding and spin-orbit coupling in the electronic properties of berkelium was explored. Key findings reveal that Bk(III) exhibits structural similarities with Cf(III) and that spin-orbit coupling significantly influences the ground state properties of late actinide compounds.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (51)

  1. AND NOTES
  2. T. K. Sato et al., Measurement of the first ionization potential of lawrencium, element 103. Nature 520, 209-211 (2015). doi: 10.1038/nature14342; pmid: 25855457
  3. J. Even et al., Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491-1493 (2014). doi: 10.1126/science.1255720; pmid: 25237098
  4. A. Bilewicz, S. Siekierski, Chemical studies of rutherfordium (Element 104): Part I. Thin film ferrocyanide surfaces for the study of the hydrolysis of rutherfordium. Radiochim. Acta 75, 121-126 (1996). doi: 10.1524/ract.1996.75.3.121
  5. N. J. Stoyer et al., Chemical identification of a long-lived isotope of dubnium, a descendent of element 115. Nucl. Phys. A. 787, 388-395 (2007). doi: 10.1016/ j.nuclphysa.2006.12.060
  6. M. Janoschek et al., The valence-fluctuating ground state of plutonium. Sci. Adv. 1, e1500188 (2015). doi: 10.1126/ sciadv.1500188; pmid: 26601219
  7. S. K. Cary et al., Emergence of californium as the second transitional element in the actinide series. Nat. Commun. 6, 6827-6834 (2015). doi: 10.1038/ncomms7827; pmid: 25880116
  8. T. Albrecht-Schmitt, Californium gleaming. Nat. Chem. 6, 840 (2014). doi: 10.1038/nchem.2035; pmid: 25143222
  9. G. Liu, S. K. Cary, T. E. Albrecht-Schmitt, Metastable charge- transfer state of californium(iii) compounds. Phys. Chem. Chem. Phys. 17, 16151-16157 (2015). doi: 10.1039/ C5CP01855B; pmid: 26032575
  10. M. J. Polinski et al., Unusual structure, bonding and properties in a californium borate. Nat. Chem. 6, 387-392 (2014). doi: 10.1038/nchem.1896; pmid: 24755589
  11. S. Heathman, T. Le Bihan, S. Yagoubi, B. Johansson, R. Ahuja, Structural investigation of californium under pressure. Phys. Rev. B 87, 214111-214118 (2013). doi: 10.1103/PhysRevB.87.214111
  12. W. T. Carnall, J. V. Beitz, H. Crosswhite, Electronic energy level and intensity correlations in the spectra of the trivalent actinide aquo ions. III. Bk 3+ . J. Chem. Phys. 80, 2301-2308 (1984). doi: 10.1063/1.446980
  13. W. T. Carnall, A systematic analysis of the spectra of trivalent actinide chlorides in D 3h site symmetry. J. Chem. Phys. 96, 8713-8726 (1992). doi: 10.1063/1.462278
  14. G. M. Jursich et al., Laser-induced fluorescence of 249 Bk 4+ in CeF 4 . Inorg. Chim. Acta 139, 273-274 (1987). doi: 10.1016/ S0020-1693(00)84093-1
  15. J. H. Burns, J. R. Peterson, Crystal structures of americium trichloride hexahydrate and berkelium trichloride hexahydrate. Inorg. Chem. 10, 147-151 (1971). doi: 10.1021/ic50095a029
  16. P. G. Laubereau, J. H. Burns, Microchemical preparation of tricyclopentadienyl compounds of berkelium, californium, and some lanthanide elements. Inorg. Chem. 9, 1091-1095 (1970). doi: 10.1021/ic50087a018
  17. J. R. Peterson, J. P. Young, D. D. Ensor, R. G. Haire, Absorption spectrophotometric and x-ray diffraction studies of the trichlorides of berkelium-249 and californium-249. Inorg. Chem. 25, 3779-3782 (1986). doi: 10.1021/ic00241a015
  18. M. R. Antonio, C. W. Williams, L. Soderholm, Berkelium redox speciation. Radiochim. Acta 90, 851-856 (2002). doi: 10.1524/ ract.2002.90.12_2002.851
  19. J. H. Burns, J. R. Peterson, R. D. Baybarz, Hexagonal and orthorhombic crystal structures of californium trichloride. J. Inorg. Nucl. Chem. 35, 1171-1177 (1973). doi: 10.1016/0022- 1902(73)80189-7
  20. E. Galbis et al., Solving the hydration structure of the heaviest actinide aqua ion known: The californium(III) case. Angew. Chem. Int. Ed. 49, 3811-3815 (2010). doi: 10.1002/ anie.200906129; pmid: 20401881
  21. S. K. Cary et al., Spontaneous partitioning of californium from curium: Curious cases from the crystallization of curium coordination complexes. Inorg. Chem. 54, 11399-11404 (2015). doi: 10.1021/acs.inorgchem.5b02052; pmid: 26562586
  22. M. L. Neidig, D. L. Clark, R. L. Martin, Covalency in f-element complexes. Coord. Chem. Rev. 257, 394-406 (2013). doi: 10.1016/j.ccr.2012.04.029
  23. B. Weaver, F. A. Kappelmann, TALSPEAK, A New Method of Separating Americium and Curium from the Lanthanides by Extraction from an Aqueous Solution of an Aminopolyacetic Acid Complex with a Monoacetic Organophosphate or Phosphonate; ORNL-3559, Oak Ridge National Laboratory: Oak Ridge, TN, 1964.
  24. J. C. Braley, T. S. Grimes, K. L. Nash, Alternatives to HDEHP and DTPA for Simplified TALSPEAK Separations. Ind. Eng. Chem. Res. 51, 629-638 (2012). doi: 10.1021/ie200285r
  25. C. R. Heathman, K. L. Nash, Characterization of europium and americium dipicolinate complexes. Sep. Sci. Technol. 47, 2029-2037 (2012).
  26. M. J. Polinski et al., Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682-10692 (2012). doi: 10.1021/ja303804r; pmid: 22642795
  27. M. J. Polinski, S. Wang, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Bonding changes in plutonium(III) and americium(III) borates. Angew. Chem. Int. Ed. 50, 8891-8894 (2011). doi: 10.1002/anie.201103502; pmid: 21853508
  28. M. J. Polinski et al., Curium(III) borate shows coordination environments of both plutonium(III) and americium(III) borates. Angew. Chem. Int. Ed. 51, 1869-1872 (2012). doi: 10.1002/anie.201107956; pmid: 22246722
  29. I. Grenthe, E. Jacobsen, E.-L. Syväoja, A. Alivaara, M. Traetteberg, Thermodynamic properties of rare earth complexes. II. Free energy, enthalpy, and entropy changes for the formation of rare earth diglycolate and dipicolinate complexes at 25.00 °C. Acta Chem. Scand. 17, 2487-2498 (1963). doi: 10.3891/acta.chem.scand.17-2487
  30. M. Miguirditchian et al., Thermodynamic study of the complexation of trivalent actinide and lanthanide cations by ADPTZ, a tridentate N-donor ligand. Inorg. Chem. 44, 1404-1412 (2005). doi: 10.1021/ic0488785; pmid: 15732980
  31. G. R. Choppin, Covalency in f-element bonds. J. Alloys Compd. 344, 55-59 (2002). doi: 10.1016/S0925-8388(02)00305-5
  32. J. A. Drader, M. Luckey, J. C. Braley, Thermodynamic considerations of covalency in trivalent actinide-(poly) aminopolycarboxylate interactions. Solvent Extr. Ion Exch 34, 114-125 (2016). doi: 10.1080/07366299.2016.1140436
  33. W. Wang, G. K. Liu, M. G. Brik, L. Seijo, D. Shi, 5f-6d Orbital hybridization of trivalent uranium in crystals of hexagonal symmetry: Effects on electronic energy levels and transition intensities. Phys. Rev. B 80, 155120-155132 (2009). doi: 10.1103/PhysRevB.80.155120
  34. J. van Leusen, M. Speldrich, H. Schilder, P. Kögerler, Comprehensive insight into molecular magnetism via CONDON: Full vs. effective models. Coord. Chem. Rev. 289-290, 137-148 (2015). doi: 10.1016/j.ccr.2014.10.011
  35. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993). doi: 10.1063/1.464913
  36. J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter 45, 13244-13249 (1992). doi: 10.1103/ PhysRevB.45.13244; pmid: 10001404
  37. F. Gendron, B. Pritchard, H. Bolvin, J. Autschbach, Single-ion 4f element magnetism: An ab-initio look at Ln(COT) 2 (-). Dalton
  38. Trans. 44, 19886-19900 (2015). doi: 10.1039/C5DT02858B; pmid: 26510902
  39. L. F. Chibotaru, L. Ungur, Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J. Chem. Phys. 137, 064112 (2012). doi: 10.1063/1.4739763; pmid: 22897260
  40. I. Ahmad et al., a-Decay of 249 97 Bk and levels in 245 95 Am. Phys. Rev. C Nucl. Phys. 87, 054328 (2013). doi: 10.1103/ PhysRevC.87.054328
  41. A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7-13 (2003). doi: 10.1107/ S0021889802022112
  42. W. Küchle, M. Dolg, H. Stoll, H. Preuß, Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535-7543 (1994). doi: 10.1063/1.466847
  43. X. Y. Cao, M. Dolg, H. Stoll, Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487-497 (2003). doi: 10.1063/1.1521431
  44. X. Cao, M. Dolg, Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 673, 203-209 (2004). doi: 10.1016/j.theochem.2003.12.015
  45. A. Moritz, X. Y. Cao, M. Dolg, Quasirelativistic energy- consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 118, 845-854 (2007). doi: 10.1007/s00214-007-0330-6
  46. W. J. Hehre, R. Ditchfield, J. A. Pople, Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257-2261 (1972). doi: 10.1063/1.1677527
  47. P. C. Hariharan, J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213-222 (1973). doi: 10.1007/BF00533485
  48. J. S. Binkley, J. A. Pople, W. J. Hehre, Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939-947 (1980). doi: 10.1021/ja00523a008
  49. M. J. Frisch et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, (2009).
  50. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37, 785-789 (1988). doi: 10.1103/PhysRevB.37.785; pmid: 9944570
  51. G. A. Zhurko, D. A. Zhurko, ChemCraft Version 1.7. www.chemcraftprog.com (accessed May 2009).