A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability (original) (raw)

A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light

Scientific Reports, 2017

Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: −43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42–3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.

Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth

1. The ability to forage and return home is essential to the success of bees as both foragers and pollinators. Pesticide exposure may cause behavioural changes that interfere with these processes, with consequences for colony persistence and delivery of pollination services. 2. We investigated the impact of chronic exposure (5–43 days) to field-realistic levels of a neonicotinoid insecticide (2Á4 ppb thiamethoxam) on foraging ability, homing success and colony size using radio frequency identification (RFID) technology in free-flying bumblebee colonies. 3. Individual foragers from pesticide-exposed colonies carried out longer foraging bouts than untreated controls (68 vs. 55 min). Pesticide-exposed bees also brought back pollen less frequently than controls indicating reduced foraging performance. 4. A higher proportion of bees from pesticide-exposed colonies returned when released 1 km from their nests; this is potentially related to increased orientation experience during longer foraging bouts. We measured no impact of pesticide exposure on homing ability for bees released from 2 km, or when data were analysed overall. 5. Despite a trend for control colonies to produce more new workers earlier, we found no overall impacts of pesticide exposure on whole colony size. 6. Synthesis and applications. This study shows that field-realistic neonicotinoid exposure can have impacts on both foraging ability and homing success of bumblebees, with implications for the success of bumblebee colonies in agricultural landscapes and their ability to deliver crucial pollination services. Pesticide risk assessments should include bee species other than honeybees and assess a range of behaviours to elucidate the impact of sublethal effects. This has relevance for reviews of neonicotinoid risk assessment and usage policy worldwide .

Neonicotinoid pesticides severely affect honey bee queens

Scientific reports, 2015

Queen health is crucial to colony survival of social bees. Recently, queen failure has been proposed to be a major driver of managed honey bee colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides during development can severely affect queens of western honey bees (Apis mellifera). In pesticide-exposed queens, reproductive anatomy (ovaries) and physiology (spermathecal-stored sperm quality and quantity), rather than flight behaviour, were compromised and likely corresponded to reduced queen success (alive and producing worker offspring). This study highlights the detriments of neonicotinoids to queens of environmentally and economically important social bees, and further strengthens the need for stringent risk assessments to safeguard biodiversity and ecosystem services that are vulnerable to these substances.

Chronic exposure to a neonicotinoid pesticide and a synthetic pyrethroid in full-sized honey bee colonies

In the last decade, the use of neonicotinoid insecticides increased significantly in the agricultural landscape and they are meanwhile considered a risk to honey bees. Besides the exposure to pesticides, colonies are treated frequently with various acaricides that beekeepers are forced to use against the parasitic mite Varroa destructor. Here we have analyzed the impact of a chronic exposure to sublethal concentrations of the common neonicotinoid thiacloprid (T) and the widely used acaricide τ-fluvalinate (synthetic pyrethroid, F) - applied alone or in combination - to honey bee colonies under field conditions. The population dynamics of bees and brood were assessed in all colonies according to the Liebefeld method. Four groups (T, F, F+T, control) with 8-9 colonies each were analyzed in two independent replications, each lasting from spring/summer until spring of the consecutive year. In late autumn, all colonies were treated with oxalic acid against Varroosis. We could not find a negative impact of the chronic neonicotinoid exposure on the population dynamics or overwintering success of the colonies, irrespective of whether applied alone or in combination with τ-fluvalinate. This is in contrast to some results obtained from individually treated bees under laboratory conditions and confirms again an effective buffering capacity of the honey bee colony as a superorganism. Yet, the underlying mechanisms for this social resilience remain to be fully understood.

Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting

Journal of Applied Ecology, 2016

1. Pesticide exposure has been implicated as a contributor to insect pollinator declines. In social bees, which are crucial pollination service providers, the effect of low-level chronic exposure is typically non-lethal leading researchers to consider whether exposure induces sublethal effects on behaviour and whether such impairment can affect colony development. 2. Studies under laboratory conditions can control levels of pesticide exposure and elucidate causative effects, but are often criticized for being unrealistic. In contrast, field studies can monitor bee responses under a more realistic pesticide exposure landscape; yet typically such findings are limited to correlative results and can lack true controls or sufficient replication. We attempt to bridge this gap by exposing bumblebees to known amounts of pesticides when colonies are placed in the field. 3. Using 20 bumblebee colonies, we assess the consequences of exposure to the neonicotinoid clothianidin, provided in sucrose at a concentration of five parts per billion, over 5 weeks. We monitored foraging patterns and pollen collecting performance from 3282 bouts using either a non-invasive photographic assessment, or by extracting the pollen from returning for-agers. We also conducted a full colony census at the beginning and end of the experiment. 4. In contrast to studies on other neonicotinoids, showing clear impairment to foraging behaviours , we detected only subtle changes to patterns of foraging activity and pollen foraging during the course of the experiment. However, our colony census measures showed a more pronounced effect of exposure, with fewer adult workers and sexuals in treated colonies after 5 weeks. 5. Synthesis and applications. Pesticide-induced impairments on colony development and foraging could impact on the pollination service that bees provide. Therefore, our findings, that bees show subtle changes in foraging behaviour and reductions in colony size after exposure to a common pesticide, have important implications and help to inform the debate over whether the benefits of systemic pesticide application to flowering crops outweigh the costs. We propose that our methodology is an important advance to previous semi-field methods and should be considered when considering improvements to current ecotoxicological guidelines for pesticide risk assessment.