Primary receptor-recognition site of human transferrin is in the C-terminal lobe (original) (raw)
Related papers
Receptor-mediated endocytosis of human transferrin and its cell surface receptor
Journal of Cellular Physiology, 1985
We have studied the process of transferrin endocytosis in human erythromyeloid cell line K562 using fluorescein (FL) and rhodamine (RD) labeled ironsaturated transferrin (FeTF), and a fluorescein labeled monoclonal antibody to the transferrin receptor (FL-mAB). Because the antireceptor antibody and FeTF bind to different sites on the TF receptor molecule, it is possible to simuitaneously and independently follow receptor and ligand. We have measured the relative amounts of transferrin or antireceptor antibody bound in the presence or absence of proteolytic enzymes using a cell sorter. At 4OC almost all of the FL-TF and the FL-mAB is surface bound in a diffuse pattern. Within minutes of elevating the temperature to 37OC surface aggregates form and the FL-TF is internalized. At this time about one sixth of the transferrin is still surface bound and accessible to papain digestion. The remainder localizes in a perinuclear cluster of vesicles. Monoclonal antibody binds to the cell surface transferrin receptor but is not internalized at 4OC or 37OC. When unlabeled diferric transferrin is added, it promotes the uptake of the FI-mAB. The addition of goat anti-mouse immunoglobulin also promotes FL-mAB uptake. These studies support the concept that a specific trigger is required for transferrin receptor endocytosis.
Co-migration and internalization of transferrin and its receptor on K562 cells
The Journal of Cell Biology, 1983
The incorporation of iron into human cells involves the binding of diferric transferrin to a specific cell surface receptor. We studied the process of endocytosis in K562, a human erythroid cell line, by using tetramethylrhodamine isothiocyanate-labeled transferrin (TRITC-transferrin) and fluorescein isothiocyanate-labeled Fab fragments of goat antireceptor IgG preparation (FITC-Fab-antitransferrin receptor antibody). Because the antireceptor antibody and transferrin bind to different sites on the transferrin receptor molecule it was possible to simultaneously and independently follow ligand and receptor. At 4 degrees C, the binding of TRITC-transferrin or FITC-Fab antitransferrin receptor antibody exhibited diffuse membrane fluorescence. At 20 degrees C, the binding of TRITC-transferrin was followed by the rapid formation of aggregates. However, the FITC-Fab antitransferrin receptor did not show similar aggregation at 20 degrees C unless transferrin was present. In the presence of ...
Receptor recognition sites reside in both lobes of human serum transferrin
The Biochemical journal, 1997
The binding of iron by transferrin leads to a significant conformational change in each lobe of the protein. Numerous studies have shown that the transferrin receptor discriminates between iron-saturated and iron-free transferrin and that it modulates the release of iron. Given these observations, it seems likely that there is contact between each lobe of transferrin and the receptor. This is the case with chicken transferrin, in which it has been demonstrated unambiguously that both lobes are required for binding and iron donation to occur [Brown-Mason and Woodworth (1984) J. Biol. Chem. 259, 1866-1873]. Further support to this contention is added by the ability of both N- and C-domain-specific monoclonal antibodies to block the binding of a solution containing both lobes [Mason, Brown and Church (1987) J. Biol. Chem. 262, 9011-9015]. In the present study a similar conclusion is reached for the binding of human serum transferrin to the transferrin receptor. With the use of recombin...
Nonacylated human transferrin receptors are rapidly internalized and mediate iron uptake
The Journal of biological chemistry, 1990
The human transferrin receptor is post-translationally modified by the addition of a fatty acyl moiety. In earlier studies, transient expression in Cos cells of human transferrin receptors in which Cys62 or Cys67 was altered to serine provided evidence that Cys62 is the major acylation site of the receptor (Jing, S., and Trowbridge, I. S. (1987) EMBO J. 6, 327-331). To determine whether acylation of the receptor is required for high efficiency endocytosis and iron uptake, wild type and mutant human transferrin receptors have been stably expressed in chick embryo fibroblasts using a helper-independent retroviral vector. In marked contrast to Cos cells, both Cys62 and Cys67 of the wild type human transferrin receptor were acylated in chick embryo fibroblasts. Moreover, their modification to serine did not abolish palmitate labeling, implying that one or both of these serine residues could serve as alternative lipid attachment sites in these cells. The relative labeling of mutant recep...
Receptor-modulated iron release from transferrin: differential effects on N- and C-terminal sites
Biochemistry, 1991
Iron release to PPi from N- and C-terminal monoferric transferrins and their complexes with transferrin receptor has been studied at pH 7.4 and 5.6 in 0.05 M HEPES or MES/0.1 M NaCl/0.01 M CHAPS at 25 degrees C. The two sites exhibit kinetic heterogeneity in releasing iron. The N-terminal form is slightly less labile than its C-terminal counterpart at pH 7.4, but much more facile in releasing iron at pH 5.6. At pH 7.4, iron removal by 0.05 M pyrophosphate from each form of monoferric transferrin complexed to the receptor is considerably slower than from the corresponding free monoferric transferrin. However, at pH 5.6, complexation of transferrin to its receptor affects the two forms differently. The rate of iron release to 0.005 M pyrophosphate by the N-terminal species is substantially the same whether transferrin is free or bound to the receptor. In contrast, the C-terminal form releases iron much faster when complexed to the receptor than when free. Urea/PAGE analysis of iron removal from free and receptor-complexed diferric transferrin at pH 5.6 reveals that its C-terminal site is also more labile in the complex, but its N-terminal site is more labile in free diferric transferrin. Thus, the newly discovered role of transferrin receptor in modulating iron release from transferrin predominantly involves the C-terminal site. This observation helps explain the prevalence of circulating N-terminal monoferric transferrin in the human circulation.
A Kinetically Active Site in the C-Lobe of Human Transferrin †
Biochemistry, 1997
Release of iron from transferrin, the iron-transporting protein of the circulation, is a concerted process involving remote amino acid residues as well as those at the two specific iron-binding sites of the protein. Previous studies of fluoresceinated transferrin have suggested Lys 569 as a kinetically active site in the C-terminal lobe of the protein. We have therefore turned to site-directed mutagenesis to investigate the role of Lys 569 in the release process at pH 5.6, the pH of the endosome where iron is transferred from transferrin to the iron-dependent cell. Mutation of positively charged Lys 569 to an uncharged Gln results in a protein in which release of iron from the mutated lobe to pyrophosphate is slowed by a factor of 15-20 and in which release kinetics switch from a complex saturation-linear to a simple saturation function. Acceleration of release by chloride is also substantially less than in native transferrin. When Lys 569 is replaced by a positively charged Arg, in contrast, observed release rates and chloride dependence are close to those of the native protein. The mechanism of release from the C-lobe site therefore appears to be sensitive to positive charge at position 569. Binding of chloride or other simple anion accelerates and is essential for release from the C-lobe; a muted response of K569Q to chloride concentration suggests that Lys 569 may function as a kinetically active anion-binding residue in the C-lobe. Despite the kinetic effects of the K569 mutation on iron release, rates of iron uptake by K562 cells from the C-lobes of native, K569Q, and K569R proteins are almost identical. In contrast to the C-lobe, iron release from the N-lobe is insensitive to charge at residue 233, the site in that lobe homologous to residue 569, with chloride retarding rather than accelerating release. K233, therefore, is not a kinetically active anion-binding site in the N-lobe. Release mechanisms differ substantially in the two lobes of transferrin despite the identity of ligands and their nearly identical arrangements in the lobes.
The Journal of cell biology, 1990
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further ...
Journal of Cell Science, 1985
Human diferric transferrin binds to the surface of K562 cells, a human leukemic cell h e . There are about 1.6 x lo6 binding sites per cell surface, exhibiting a KO of about lo-' M. Upon warming cells to 37 O C there is a rapid increase in uptake to a steady state level of twice that obtained at 0 "C. This is accounted for by internalization of the ligand as shown by the development of resistance to either acid wash or protease treatment of the ligand-cell association. After a minimum residency time of 4-5 min, undegraded transferrin is released from the cell. Internalization is rapid but is dependent upon cell surface occupancy; at occupancies of 20% or greater the rate coefficient is maximal at about 0.1-0.2 min-l. In the absence of externally added ligand only 60% of the internalized transferrin completes the cycle and is released to the medium with a rate coefficient of 0.05 min-'. The remaining transferrin can be released from the cell only by the addition of ligand, suggesting a tight coupling between cell surface binding, internalization, and release of internalized ligand. There is a loss of cell surface-binding capacity that accompanies transferrin internalization. At low (~5 0 % ) occupancy this loss is monotonic with the extent of internalization.
The Mechanism of Iron Release from the Transferrin-Receptor 1 Adduct
Journal of Molecular Biology, 2006
We report the determination in cell-free assays of the mechanism of iron release from the N-lobe and C-lobe of human serum transferrin in interaction with intact transferrin receptor 1 at 4.3%pH%6.5. Iron is first released from the N-lobe in the tens of milliseconds range and then from the C-lobe in the hundreds of seconds range. In both cases, iron loss is rate-controlled by slow proton transfers, rate constant for the N-lobe k 1 Z1.20(G0.05)!10 6 M K1 s K1 and for the C-lobe k 2 Z1.6(G0.1)! 10 3 M K1 s K1. This iron loss is subsequent to a fast proton-driven decarbonation and is followed by two proton gains, (pK 1a)/2Z5.28 per proton for the N-lobe and (pK 2a)/2Z5.10 per proton for the C-lobe. Under similar experimental conditions, iron loss is about 17-fold faster from the N-lobe and is at least 200-fold faster from the C-lobe when compared to holotransferrin in the absence of receptor 1. After iron release, the apotransferrin-receptor adduct undergoes a slow partial dissociation controlled by a change in the conformation of the receptor; rate constant k 3 Z1.7(G0.1)!10 K3 s K1. At endosomic pH, the final equilibrated state is attained in about 1000 s, after which the free apotransferrin, two prototropic species of the acidic form of the receptor and apotransferrin interacting with the receptor coexist simultaneously. However, since recycling of the vesicle containing the receptor to the cell surface takes a few minutes, the major part of transferrin will still be forwarded to the biological fluid in the form of the apotransferrinreceptor protein-protein adduct.