Quantum structure in economics: The Ellsberg paradox (original) (raw)

1. The Sure-Thing Principle and the Ellsberg Paradox

2015

The Allais and Ellsberg paradoxes show that the expected utility hypothesis and Savage’s Sure-Thing Principle are violated in real life decisions. The popular explanation in terms of ambiguity aversion is not completely accepted. On the other hand, we have recently introduced a notion of contextual risk to mathematically capture what is known as ambiguity in the economics literature. Situations in which contextual risk occurs cannot be modeled by Kolmogorovian classical probabilistic structures, but a non-Kolmogorovian framework with a quantum-like structure is needed. We prove in this paper that the contextual risk approach can be applied to the Ellsberg paradox, and elaborate a sphere model within our hidden measurement formalism which reveals that it is the overall conceptual landscape that is responsible of the disagreement between actual human decisions and the predictions of expected utility theory, which generates the paradox. This result points to the presence of a quantum c...

A Contextual Risk Model for the Ellsberg Paradox

2011

The Allais and Ellsberg paradoxes show that the expected utility hypothesis and Savage's Sure-Thing Principle are violated in real life decisions. The popular explanation in terms of 'ambiguity aversion' is not completely accepted. On the other hand, we have recently introduced a notion of 'contextual risk' to mathematically capture what is known as 'ambiguity' in the economics literature. Situations in which contextual risk occurs cannot be modeled by Kolmogorovian classical probabilistic structures, but a non-Kolmogorovian framework with a quantum-like structure is needed. We prove in this paper that the contextual risk approach can be applied to the Ellsberg paradox, and elaborate a 'sphere model' within our 'hidden measurement formalism' which reveals that it is the overall conceptual landscape that is responsible of the disagreement between actual human decisions and the predictions of expected utility theory, which generates the para...

Quantum Structures in Human Decision-Making: Towards Quantum Expected Utility

International Journal of Theoretical Physics, 2019

Ellsberg thought experiments and empirical confirmation of Ellsberg preferences pose serious challenges to subjective expected utility theory (SEUT). We have recently elaborated a quantum-theoretic framework for human decisions under uncertainty which satisfactorily copes with the Ellsberg paradox and other puzzles of SEUT. We apply here the quantum-theoretic framework to the Ellsberg two-urn example, showing that the paradox can be explained by assuming a state change of the conceptual entity that is the object of the decision (decision-making, or DM, entity) and representing subjective probabilities by quantum probabilities. We also model the empirical data we collected in a DM test on human participants within the theoretic framework above. The obtained results are relevant, as they provide a line to model real life, e.g., financial and medical, decisions that show the same empirical patterns as the two-urn experiment.

A Quantum-Conceptual Explanation of Violations of Expected Utility in Economics

The expected utility hypothesis is one of the building blocks of classical economic theory and founded on Savage's Sure-Thing Principle. It has been put forward, e.g. by situations such as the Allais and Ellsberg paradoxes, that real-life situations can violate Savage's Sure-Thing Principle and hence also expected utility. We analyze how this violation is connected to the presence of the 'disjunction effect' of decision theory and use our earlier study of this effect in concept theory to put forward an explanation of the violation of Savage's Sure-Thing Principle, namely the presence of 'quantum conceptual thought' next to 'classical logical thought' within a double layer structure of human thought during the decision process. Quantum conceptual thought can be modeled mathematically by the quantum mechanical formalism, which we illustrate by modeling the Hawaii problem situation, a well-known example of the disjunction effect, and we show how the dynamics in the Hawaii problem situation is generated by the whole conceptual landscape surrounding the decision situation.

A Quantum Cognition Analysis of the Ellsberg Paradox

The 'expected utility hypothesis' is one of the foundations of classical approaches to economics and decision theory and Savage's 'Sure-Thing Principle' is a fundamental element of it. It has been put forward that real-life situations exist, illustrated by the 'Allais' and 'Ellsberg paradoxes', in which the Sure-Thing Principle is violated, and where also the expected utility hypothesis does not hold. We have recently presented strong arguments for the presence of a double layer structure, a 'classical logical' and a 'quantum conceptual', in human thought and that the quantum conceptual mode is responsible of the above violation. We consider in this paper the Ellsberg paradox, perform an experiment with real test subjects on the situation considered by Ellsberg, and use the collected data to elaborate a model for the conceptual landscape surrounding the decision situation of the paradox. We show that it is the conceptual landscape which gives rise to a violation of the Sure-Thing Principle and leads to the paradoxical situation discovered by Ellsberg.

Contextual Risk and Its Relevance in Economics

2011

Uncertainty in economics still poses some fundamental problems illustrated, e.g., by the Allais and Ellsberg paradoxes. To overcome these difficulties, economists have introduced an interesting distinction between 'risk' and 'ambiguity' depending on the existence of a (classical Kolmogorovian) probabilistic structure modeling these uncertainty situations. On the other hand, evidence of everyday life suggests that 'context' plays a fundamental role in human decisions under uncertainty. Moreover, it is well known from physics that any probabilistic structure modeling contextual interactions between entities structurally needs a non-Kolmogorovian quantum-like framework. In this paper we introduce the notion of 'contextual risk' with the aim of modeling a substantial part of the situations in which usually only 'ambiguity' is present. More precisely, we firstly introduce the essentials of an operational formalism called 'the hidden measurement...

Special Issue on Econophysics Research Article Contextual Risk and its Relevance in Economics

2015

Uncertainty in economics still poses some fundamental problems illustrated, e.g., by the Allais and Ellsberg paradoxes. To overcome these difficulties, economists have introduced an interesting distinction between risk and ambiguity depending on the existence of a (classical Kolmogorovian) probabilistic structure modeling these uncertainty situations. On the other hand, evidence of everyday life suggests that context plays a fundamental role in human decisions under uncertainty. Moreover, it is well known from physics that any probabilistic structure modeling contextual interactions between entities structurally needs a non-Kolmogorovian quantum-like framework. In this paper we introduce the notion of contextual risk with the aim of modeling a substantial part of the situations in which usually only ambiguity is present. More precisely, we firstly introduce the essentials of an operational formalism called the hidden measurement approach in which probability is introduced as a conse...

From ambiguity aversion to a generalized expected utility. Modeling preferences in a quantum probabilistic framework

Journal of Mathematical Psychology, 2016

Ambiguity and ambiguity aversion have been widely studied in decision theory and economics both at a theoretical and an experimental level. After Ellsberg's seminal studies challenging subjective expected utility theory (SEUT), several (mainly normative) approaches have been put forward to reproduce ambiguity aversion and Ellsberg-type preferences. However, Machina and other authors have pointed out some fundamental difficulties of these generalizations of SEUT to cope with some variants of Ellsberg's thought experiments, which has recently been experimentally confirmed. Starting from our quantum modeling approach to human cognition, we develop here a general probabilistic framework to model human decisions under uncertainty. We show that our quantum theoretical model faithfully represents different sets of data collected on both the Ellsberg and the Machina paradox situations, and is flexible enough to describe different subjective attitudes with respect to ambiguity. Our approach opens the way toward a quantumbased generalization of expected utility theory (QEUT), where subjective probabilities depend on the state of the conceptual entity at play and its interaction with the decision-maker, while preferences between acts are determined by the maximization of this 'state-dependent expected utility'.

Testing ambiguity and Machina preferences within a quantum-theoretic framework for decision-making

Journal of Mathematical Economics

The Machina thought experiments pose to major non-expected utility models challenges that are similar to those posed by the Ellsberg thought experiments to subjective expected utility theory (SEUT). We test human choices in the 'Ellsberg three-color example', confirming typical ambiguity aversion patterns, and the 'Machina 50/51 and reflection examples', partially confirming the preferences hypothesized by Machina. Then, we show that a quantum-theoretic framework for decision-making under uncertainty recently elaborated by some of us allows faithful modeling of the collected data. In the quantum-theoretic framework subjective probabilities are represented by quantum probabilities, while quantum state transformations enable representations of ambiguity aversion and subjective attitudes toward it.

OR Forum—Quantum Mechanics and Human Decision Making

Operations Research, 2013

In physics, at the beginning of the twentieth century it was recognized that some experiments could not be explained by the conventional classical mechanics, but the same could be explained by the newly discovered quantum theory. It resulted in a new mechanics called quantum mechanics that revolutionized scientific and technological developments. Again, at the beginning of the twenty-first century, it is being recognized that some experiments related to the human decision-making processes could not be explained by the conventional classical decision theory but the same could be explained by the models based on quantum mechanics. It is now recognized that we need quantum mechanics in psychology as well as in economics and finance. In this paper we attempt to advance and explain the present understanding of applicability of quantum mechanics to the human decision-making processes. Using the postulates analogous to the postulates of quantum mechanics, we show the derivation of the quan...