The abundance of mixotrophic algae drives the carbon isotope composition of the copepod Boeckella gracilipes in shallow Patagonian lakes (original) (raw)

Abstract

The importance of allochthonous versus authochthonous carbon in the diet of zooplankters has been discussed at length in the recent literature, the more so for lakes with dissolved organic matter (DOM) concentrations between 3.5 and 25 mg L 21 . Here, we investigated the sources of carbon for Boeckella gracilipes (Copepoda, Calanoida) in three Patagonian shallow lakes that have different but relatively moderate DOM concentrations (,5 mg L 21 ). We linked their d 13 C values with parameters such as water color (absorbance 440 nm, abs440 ), dissolved organic carbon (DOC) concentrations and the ratio Color abs440 :Chlorophyll a (Chl a). We also determined the isotopic composition of seston and phytoplankton composition. Our results showed a direct relationship between the d 13 C values of B. gracilipes and seston (r 2 ¼ 0.64, P,0.001), and we demonstrated the importance of phytoplankton to B. gracilipes as its d 13 C signal was strongly related to the abundance of the mixotrophic nanoflagellate Chrysochromulina parva (r 2 ¼ 0.86, P , 0.001). We further found an inverse relationship between DOM and the ratio Color abs440 :Chl a and B. gracilipes d 13 C values (r 2 ¼ 0.67 and 0.56, respectively), which also supported the importance of authochthonous carbon for the copepod. We conclude that phytoplankton, particularly mixotrophic algae, rather than allochthonous carbon, supports the copepod B. gracilipes in shallow Patagonian lakes.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (54)

  1. 2011-2483 to C.T., PICT 2011-2240 to E.B. and PICT 2012-1168 to B.M.] and the CONICET-Consejo Nacional de Investigaciones Cientı ´ficas y Te ´cnicas (PIP 11420110100015 to C.T.).
  2. Arcagni, M., Campbell, L. M., Arribe ´re, M. A. et al. (2013) Food web structure in a double-basin ultra-oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica, 43, 131-142.
  3. Balseiro, E. G. and Modenutti, B. E. (1998) Pelagic communities and ecosystem processes in Andean Patagonian lakes. Ecol. Austral., 8, 183 -189.
  4. Balseiro, E. G., Modenutti, B. E. and Queimalin ˜os, C. P. (2001) Feeding of Boeckella gracilipes (Copepoda, Calanoida) on ciliates and phytofla- gellates in an ultraoligotrophic Andean lake. J. Plankton Res., 23, 849 -857.
  5. Balseiro, E. G., Queimalin ˜os, C. P. and Modenutti, B. E. (2004) Grazing impact on autotrophic picoplankton in two south Andean lakes (Patagonia, Argentina) with different light:nutrient ratios. Rev. Chil. Hist. Nat., 77, 73-85.
  6. Bastidas Navarro, M. A., Balseiro, E. G. and Modenutti, B. E. (2009a) Effect of UVR on lake water and macrophyte leachates in shallow Andean-Patagonian lakes: bacterial response to changes in optical features. Photochem. Photobiol., 85, 332-340.
  7. Bastidas Navarro, M. A. and Modenutti, B. E. (2012) Precipitation pat- terns, dissolved organic matter and changes in the plankton assem- blage in Lake Escondido (Patagonia, Argentina). Hydrobiologia, 691, 189 -202.
  8. Bastidas Navarro, M. A., Modenutti, B. E., Callieri, C. et al. (2009b) Balance between primary and bacterial production in North Patagonian shallow lakes. Aquat. Ecol., 43, 867 -878.
  9. Bastviken, D., Ejlertsson, J., Sundh, I. et al. (2003) Methane as a source of carbon and energy for lake pelagic food webs. Ecology, 84, 969-981.
  10. Batt, R. D., Carpenter, S. R., Cole, J. J. et al. (2012) Resources support- ing the food web of a naturally productive lake. Limnol. Oceanogr., 57, 1443.
  11. Berggren, M., Stro ¨m, L., Laudon, H. et al. (2010) Lake secondary pro- duction fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. Ecol. Lett., 13, 870 -880.
  12. Berggren, M., Ziegler, S. E., St-Gelais, N. F. et al. (2014) Contrasting pat- terns of allochthony among three major groups of crustacean zoo- plankton in boreal and temperate lakes. Ecology, 95, 1947-1959.
  13. C. TROCHINE ET AL. j THE SOURCES OF CARBON FOR BOECKELLA GRACILIPES Brett, M. T. (2014) Are phytoplankton in northern Swedish lakes ex- tremely 13 C depleted? Limnol. Oceanogr., 59, 1795-1799.
  14. Brett, M. T., Kainz, M. J., Taipale, S. J. et al. (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl Acad. Sci. U.S.A., 106, 21197-21201.
  15. Carpenter, S. R., Cole, J. J., Pace, M. L. et al. (2005) Ecosystem subsidies: terrestrial support of aquatic food webs from 13 C addition to contrast- ing lakes. Ecology, 86, 2737-2750.
  16. Caut, S., Angulo, E. and Courchamp, F. (2009) Variation in dis- crimination factors (D 15 N and D 13 C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol., 46, 443 -453.
  17. Cole, J. J., Carpenter, S. R., Kitchell, J. et al. (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable iso- topes of carbon, nitrogen, and hydrogen. Proc. Natl Acad. Sci. U.S.A., 108, 1975-1980.
  18. Cole, J. J., Carpenter, S. R., Pace, M. L. et al. (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol. Lett., 9, 558-568.
  19. France, R. L., Del Giorgio, P. A. and Westkott, K. A. (1997) Productivity and heterotrophy influences on zooplankton d 13 C in northern temperate lakes. Aquat. Microb. Ecol., 12, 85-93.
  20. Francis, T. B., Schindler, D. E., Holtgrieve, G. W. et al. (2011) Habitat structure determines resource use by zooplankton in temperate lakes. Ecol. Lett., 14, 364-372.
  21. Grey, J. (2000) Trophic fractionation and the effects of diet switch on the carbon stable isotopic "signatures" of pelagic consumers. Verh. Internat. Verein. Limnol., 27, 3187-3191.
  22. Grey, J., Jones, R. I. and Sleep, D. (2001) Seasonal changes in the im- portance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol. Oceanogr., 46, 505-513.
  23. Grossart, H. P., Frindte, K., Dziallas, C. et al. (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc. Natl Acad. Sci. U.S.A., 108, 19657-19661.
  24. Jansson, M., Bergstro ¨m, A. K., Blomqvist, P. et al. (1999) Impact of allochthonous organic carbon on microbial food web carbon dynamics and structure in Lake Ortrasket. Arch. Hydrobiol., 144, 409-428.
  25. Jansson, M., Persson, L., De Roos, A. M. et al. (2007) Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends Ecol. Evol., 22, 316-322.
  26. Jones, H. L. J. (1997) A classification of mixotrophic protists based on their behaviour. Freshwater Biol., 37, 35-43.
  27. Jones, R. I., Grey, J., Sleep, D. et al. (1999) Stable isotope analysis of zooplankton carbon nutrition in humic lakes. Oikos, 86, 97-104.
  28. Kankaala, P., Taipale, S., Grey, J. et al. (2006) Experimental d 13 C evi- dence for a contribution of methane to pelagic food webs in lakes. Limnol. Oceanogr., 51, 2821-2827.
  29. Karlsson, J., Berggren, M., Ask, J. et al. (2012) Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol. Oceanogr., 57, 1042.
  30. Karlsson, J., Berggren, M., Ask, J. et al. (2014) Response to Comment: terrestrial support of pelagic consumers in unproductive lakes- uncertainty and potential in assessments using stable isotopes. Limnol. Oceanogr., 59, 1800-1803.
  31. Karlsson, J., Jonsson, A., Meili, M. et al. (2003) Control of zooplankton dependence on allochthonous organic carbon in humic and clear- water lakes in northern Sweden. Limnol. Oceanogr., 48, 269-276.
  32. Karlsson, J., Jonsson, A., Meili, M. et al. (2004) d 15 N of zooplankton species in subarctic lakes in northern Sweden: effects of diet and trophic fractionation. Freshwater Biol., 49, 526-534.
  33. Landry, M. R. (1981) Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacificus. Mar. Biol., 65, 77-82.
  34. Laybourn-Parry, J. (2002) Survival mechanisms in Antarctic lakes. Phil. Trans. Roy. Soc. Lond. Ser. B: Biol. Sci., 357, 863-869.
  35. Lennon, J. T., Faiia, A. M., Feng, X. et al. (2006) Relative importance of CO 2 recycling and CH 4 pathways in lake food webs along a dissolved organic carbon gradient. Limnol. Oceanogr., 51, 1602-1613.
  36. Matthews, B. and Mazumder, A. (2006) Habitat specialization and the exploitation of allochthonous carbon by zooplankton. Ecology, 87, 2800-2812.
  37. Modenutti, B. E. (2014) Mixotrophy in Argentina freshwaters. In Tell, G., Izaguirre, I. and O'farrell, I. (eds) Freshwater Phytoplankton of Argentina. Vol. 65. Advances in Limnology, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, pp. 359-374.
  38. Modenutti, B. E., Balseiro, E. G., Callieri, C. et al. (2005) Effect of UV-B and different PAR intensities on the primary production of the mixotrophic planktonic ciliate Stentor araucanus. Limnol. Oceanogr., 50, 864 -871.
  39. Modenutti, B. E., Queimalin ˜os, C. P., Balseiro, E. G. et al. (2003) Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecol., 24, S289-S298.
  40. Morris, D. P., Zagarese, H., Williamson, C. E. et al. (1995) The attenu- ation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr., 40, 1381-1391.
  41. Pace, M. L., Carpenter, S. R., Cole, J. J. et al. (2007) Does terrestrial organic carbon subsidize the planktonic food web in a clear-water lake? Limnol. Oceanogr., 52, 2177-2189.
  42. Pace, M. L., Cole, J. J., Carpenter, S. R. et al. (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427, 240-243.
  43. Paruelo, J. M., Beltran, A., Jobbagy, E. et al. (1998) The climate of Patagonia: general patterns and controls on biotic. Ecol. Austral., 8, 85-101.
  44. Peterson, B. J. and Fry, B. (1987) Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 293-320.
  45. Post, D. M., Layman, C. A., Arrington, D. A. et al. (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152, 179-189.
  46. Pulido-Villena, E., Reche, I. and Morales-Baquero, R. (2005) Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Can. J. Fish. Aquat. Sci., 62, 2640-2648.
  47. Rautio, M., Mariash, H. and Forsstro ¨ma, L. (2011) Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnol. Oceanogr., 56, 1513-1524.
  48. Solomon, C. T., Carpenter, S. R., Clayton, M. K. et al. (2011) Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology, 92, 1115-1125.
  49. Taipale, S., Kankaala, P. and Jones, R. I. (2007) Contributions of differ- ent organic carbon sources to Daphnia in the pelagic foodweb of a small polyhumic lake: results from mesocosm DI 13 C-additions. Ecosystems, 10, 757-772.
  50. JOURNAL OF PLANKTON RESEARCH j VOLUME 0 j NUMBER 0 j PAGES 1-11 j 2015
  51. Taipale, S., Kankaala, P., Tiirola, M. et al. (2008) Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology, 89, 463-474.
  52. Ventura, M. and Catalan, J. (2008) Incorporating life histories and diet quality in stable isotope interpretations of crustacean zooplankton. Freshwater Biol., 53, 1453-1469.
  53. Vuorio, K., Meili, M. and Sarvala, J. (2006) Taxon-specific variation in the stable isotopic signatures (d 13 C and d 15 N) of lake phytoplankton. Freshwater Biol., 51, 807-822.
  54. Wilkinson, G. M., Carpenter, S. R., Cole, J. J. et al. (2013) Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshwater Biol., 58, 2037-2049.