Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation (original) (raw)

Eco-synthesis and characterization of titanium nanoparticles: Testing its cytotoxicity and antibacterial effects

Green Processing and Synthesis

In recent years, green synthesis of nanoparticles has been the cornerstone of development of nanotechnology and its applications, as it emphasizes on promoting environmental sustainability. The aim of the present study was to investigate the potential health benefits of the green-synthesized titanium nanoparticles (TiO2NPs). TiO2NPs were synthesized using titanium(iv) isopropoxide and lupin bean extract. The synthesized particles were characterized to assess the average particle size by dynamic light scattering, and X-ray diffraction method was used to study the crystalline nature. The average particle size recorded was 9.227 nm with a polydispersity index (PDI) of 0.382. The morphology of the particles was assessed by scanning electron microscope and transmission electron microscopy which showed varied shapes of the nanoparticles, uniform spherical and crystallite rod shaped. Further, the cytotoxic efficacy of the nanoparticles was assessed against the breast cancer (MCF-7) cell li...

Antibacterial Activities of Titanium Oxide Nanoparticles

Journal of Bioelectronics and Nanotechnology

Titanium dioxide nanostructures are promising material for optical and antibacterial applications. In this study, TiO 2 nanoparticles have been synthesized using facile microwave-assisted hydrothermal process. The optical properties and the structure of the synthesized TiO 2 nanoparticles were characterized using several techniques such as Transmission Electron Microscopy (TEM), UV measurements, Fourier Transform Infrared (FTIR), Energy and Dispersive X-ray Spectroscopy (EDXS), X-ray diffraction, Scanning Electron Microscopy (SEM), and Thermogravimetric (TGA). The antibacterial activity of TiO 2 nanoparticles were assessed against the pathogenic strain E. coli ATCC ® 8739 ™. The reported results indicated superior antibacterial activity of TiO 2 nanoparticles tested against the pathogenic bacteria, which reveals potential applications of TiO 2 nanoparticles in biomedical and medical fields.

Antimicrobial Effect of Titanium Dioxide Nanoparticles

Antimicrobial Resistance - A One Health Perspective, 2020

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacterial strains, and therefore a current concern for food safety and human health. The interest for new antimicrobial substances has been focused toward metal oxide nanoparticles. Specifically, titanium dioxide (TiO2) has been considered as an attractive antimicrobial compound due to its photocatalytic nature and because it is a chemically stable, non-toxic, inexpensive, and Generally Recognized as Safe (GRAS) substance. Several studies have revealed this metal oxide demonstrates excellent antifungal and antibacterial properties against a broad range of both Gram-positive and Gram-negative bacteria. These properties were significantly improved by titanium dioxide nanoparticles (TiO2 NPs) synthesis. In this chapter, latest developments on routes of synthesis of TiO2 NPs and antimicrobial activity of these nanostructures are presented. Furthermore, TiO2 NPs favor the inactivation of microorganisms due ...

Sunlight-driven efficient photocatalytic and antimicrobial studies of microwave-assisted Ir-doped TiO 2 nanoparticles for environmental safety

A simple, low-cost and an eco-friendly synthesis of Ir-doped titanium dioxide nanoparticles (TiO 2 NPs) with an anatase phase by the microwave-assisted method using an aqueous solution of titanium tetra-isopropoxide (TTIP) and iridium (III) chloride monohydrate. The synthesized Ir-doped TiO 2 NPs were characterized by using various spectro-analytical techniques for the confirmation of NPs. The photocatalytic activity of the synthesized Ir-doped TiO 2 NPs has been evaluated by taking 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenols (2,4,6-TCP) as model water contaminant pollutants under sunlight irradiation. The photocatalytic conversion is approximately 84.24%, 81.22%, 76.01% and 72.11% of 2-CP, 4-CP, 2,4-DCP and 2,4,6-TCP respectively, by using the synthesized Ir-doped TiO 2 NPs. The efficient photocatalytic degradation was observed in the degradation of 2-CP in 60 min of sunlight irradiation. The rate equation of photocatalytic degradation mechanism was followed pseudo-first order kinetics. Finally, the screening of antimicrobial activity by paper disc method against few bacteria, such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and fungi such as Aspergillus niger (A. niger) and Candida albicans (C. albicans), showed that the prepared Ir-doped TiO 2 NPs have the prominent results.

Novel Synthesis of Titanium Oxide Nanoparticles: Biological Activity and Acute Toxicity Study

2021

Titanium oxide nanoparticles (TiO2 NPs) have been attracting numerous research studies due to their activity; however, there is a growing concern about the corresponding toxicity. Here in the present study, titanium oxide nanoparticles were newly synthesized using propolis extract followed by antimicrobial activity, cytotoxicity assay using human cancer cell lines, and acute toxicity study. The physicochemical characterization of the newly synthesized TiO2 NPs had average size = 57.5 nm, PdI = 0.308, and zeta potential = −32.4 mV. Antimicrobial activity assessment proved the superior activity against Gram-positive compared to Gram-negative bacteria and yeast (lowest MIC values 8, 32, and 32, respectively). The newly synthesized TiO2 NPs showed a potent activity against the following human cancer cell lines: liver (HepG-2) (IC50 8.5 µg/mL), colon (Caco-2), and breast (MDA-MB 231) (IC50 11.0 and 18.7 µg/mL). In vivo acute toxicity study was conducted using low (10 mg/kg) and high (100...

ANTIMICROBIAL PROPERTIES OF TITANIUM NANOPARTICLES

Functionalized Nanoscale Materials, Devices and Systems, 2008

In the present study, nanostructured titania particles were synthesized using hydrothermal processing and their photocatalytic antimicrobial activities were characterized. Sol-gel synthesized TiO2 samples were treated with a two step hydrothermal treatment. The first stage treatment was the alkaline treatment with 10 M of NaOH for 48 h at 130ºC, followed with the second step which applied with distilled water for 48 h at 200°C. Scanning Electron Microscope (SEM) images showed that alkaline treatment yields lamellar structure particles from the sol-gel synthesized anatase. Further treatment of nanoplates with distilled water results in crystal growth and the formation of nano structured thorn like particles. The photocatalytic antimicrobial activities of samples were determined against Escherichia coli under solar irradiation for 4 h. It was observed that the samples treated under alkaline conditions have higher antimicrobial activity than the untreated samples.

Environmental Toxicity and Antimicrobial Efficiency of Titanium Dioxide Nanoparticles in Suspension

The aim of this work was to evaluate the photokilling efficiency of synthesized titanium dioxide nanoparticles in suspension. Two strains of Escherichia coli, Lactobacillus casei rhamnosus and Staphylococcus aureus were used as probes to test the photokilling activities of the nanoparticles. The toxicity effects of TiO2 nanoparticles on the environment were determined by a standard test using gram-negative bioluminescent bacteria Vibrio fischeri. The antimicrobial activity of these nanoparticles (NPs) was then investigated versus NPs concentration, UV irradiation time and micro- organism strains. We evaluated the LC50 values of the nanoparticles suspension by counting the Colony-Forming Units. Results highlighted the differences in bacteria sensitivity facing photokilling treatment induced by the irradiation of anatase TiO2 nanoparticles suspension. At the concentration of 1 g·L-1 TiO2, tested bacteria were killed after 30 minutes of photo-treatment. Using different TiO2 concentrations, the Staphylococcus aureus gram-positive/catalase-positive bacteria were more resistant than gram-negative/catalase-positive ones or gram-positive/catalase-negative bacteria. An effect of UV irradiation was evaluated by the quantification of hydrogen peroxide generated by the photolysis of water molecules in presence of the nanoparticles with or without the most resistant bacterium (S. aureus). After 30 minutes with UV irradiation in these two conditions, the concentration of hydrogen peroxide was 35 μM in presence of 1.2 g·L-1 TiO2 suspension. This result suggested that the resistance mechanism of S. aureus was not due to an extracelullar H2O2 enzymatic degradation.

Impact of Titanium Dioxide Nanoparticle Dispersion State and Dispersion Method on Their Toxicity Towards A549 Lung Cells and Escherichia coli Bacteria

Journal of Translational Toxicology, 2014

Titanium-dioxide nanoparticle (TiO 2-NPs) dispersion for toxicological studies is classically achieved by high power sonication. The aim of this study was to compare the dispersion state resulting from different dispersion techniques, and to correlate dispersion state and dispersion method to in vitro toxicity in a final view to contribute to the very active field of establishing protocols for reliable NP toxicity testing. To achieve this objective, several dispersion methods were applied to Evonik P25 TiO 2-NPs. The dispersion state, as well as the stability of these TiO 2-NP suspensions were evaluated by photon correlation spectroscopy (PCS) and turbidimetry. A549 human lung cells and Escherichia coli (E. coli) bacteria were exposed to these TiO 2-NP suspensions. Cytotoxicity, alteration of cell membrane integrity and intracellular accumulation of reactive oxygen species (ROS) were measured. Our results show that ultrasonication and ball milling both lead to well dispersed TiO 2-NP suspensions. Cytotoxicity depends on dispersion state while cell membrane integrity and intracellular accumulation of ROS seem more dependent on the dispersion method. In particular, ultrasonication leads to the most deleterious effects, as compared to ball milling, while the dispersion state is similar. Moreover TiO 2-NPs coated with proteins lead to less damage than uncoated TiO 2-NPs.

Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation

SN Applied Sciences

Nanoparticles have wide applications in various fields due to their small size. Titanium dioxide nanoparticles are bright with high refractive index (n = 2.4) which makes them suitable for industry dealing with toothpaste, pharmaceuticals, coatings, papers, inks, plastics, food products, cosmetics and textile. Three crystalline phases of titanium dioxide, are anatase (tetragonal), rutile (tetragonal), and brookite (orthorhombic) in which brookite has no commercial value. Due to their self cleaning and antifogging property, they are used in the preparation of cloths, windows, tiles and anti-fogging car mirrors. Titanium dioxide nanoparticles also serve as environment sanitizing agent. Sol-gel route, flame hydrolysis, co-precipitation, impregnation and chemical vapor deposition like techniques are used for the synthesis of TiO 2 nanoparticles. Biosynthesis of titanium dioxide nanoparticles has gained wide interest among researchers due to its cost effective, eco-friendly and reproducible approach. The sol-gel route remediation of the titanium dioxide from the environment is an important step and it can be achieved by using physical processes like sedimentation and filtration. The biosynthesis of titanium dioxide nanoparticles can be used in comparison to chemical synthesis. The titanium dioxide nanoparticles have wide applications, viz., reducing toxicity of dyes and pharmaceutical drugs; waste water treatment; reproduction of silkworm; space applications; food industries; etc., and so have immense industrial importance. The applications of nanoparticles synthesized by biological approach will be advantageous for the industries; environment and agriculture.

Assessing the effect of different natural dissolved organic matters on the cytotoxicity of titanium dioxide nanoparticles with bacteria

Journal of Environmental Sciences-china, 2016

Titanium dioxide nanoparticles (TiO 2 NPs) are among the most widely manufactured nanomaterials on a global scale. However, prudent and vigilant surveillance, incumbent upon the scientific community with the advent of new technologies, has revealed potentially undesirable effects of TiO 2 NPs on biological systems and the natural environment during their application and discharge. Such effects are likely best evaluated by first assessing the fate of the TiO 2 NPs in natural environments. In this study, the effects of terrestrial humic acid (HA) and tannic acid (TA), two major members of the collective: dissolved organic matter (DOM), on the cytotoxicity of TiO 2 NPs to E. coli were investigated in the presence and absence of natural sunlight. Qualitative (TEM) and quantitative (LC 50) analyses were employed in this study. In addition, the production of reactive oxygen species (ROS) in the form of  OH was further assessed-as HA or TA increased the production of ROS decreased. The inhibition of bacterial viability in the light treatment groups, with respective treatment organics at concentrations of 10 ppm, was less in TA than in terrestrial HA. SAS was used to analyze the treatment effect of individual factors of light irradiation, DOM, and concentration of TiO 2 NPs.